This paper establishes new monotonic properties of nonoscillatory solutions for second-order half-linear functional differential equations with delayed argument
$ \begin{equation*} (a(r)(u'(r))^{m})' = b(r)u^{m}(\varphi(r)) \end{equation*} $
where $ m \in (0, 1) $. We develop several key monotonicity results for Kneser solutions and use these properties to derive criteria for the elimination of bounded nonoscillatory solutions. Our approach extends known techniques from linear differential equations to the half-linear case, providing new insights into the qualitative behavior of solutions.
Citation: Pakize Temtek, Yerzhan Turarov. Properties of monotonic solutions to half-linear second-order delay differential equations[J]. AIMS Mathematics, 2025, 10(8): 18983-18996. doi: 10.3934/math.2025848
This paper establishes new monotonic properties of nonoscillatory solutions for second-order half-linear functional differential equations with delayed argument
$ \begin{equation*} (a(r)(u'(r))^{m})' = b(r)u^{m}(\varphi(r)) \end{equation*} $
where $ m \in (0, 1) $. We develop several key monotonicity results for Kneser solutions and use these properties to derive criteria for the elimination of bounded nonoscillatory solutions. Our approach extends known techniques from linear differential equations to the half-linear case, providing new insights into the qualitative behavior of solutions.
| [1] | R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation theory for second order linear, half-linear, superlinear and sublinear dynamic equations, Dordrecht: Springer, 2002. https://doi.org/10.1007/978-94-017-2515-6 |
| [2] |
B. Baculíková, Monotonic properties of kneser solutions of second order linear differential equations with delayed argument, Opuscula Math., 45 (2025), 27–38. https://doi.org/10.7494/OpMath.2025.45.1.27 doi: 10.7494/OpMath.2025.45.1.27
|
| [3] |
B. Baculíková, J. Džurina, New asymptotic results for half-linear differential equations with deviating argument, Carpathian J. Math., 38 (2022), 327–335. https://doi.org/10.37193/cjm.2022.02.05 doi: 10.37193/cjm.2022.02.05
|
| [4] |
M. Bohner, S. R. Grace, I. Jadlovská, Oscillation criteria for second-order neutral delay differential equations, Electron. J. Qual. Theory Differ. Equ., 2017 (2017), 60. https://doi.org/10.14232/ejqtde.2017.1.60 doi: 10.14232/ejqtde.2017.1.60
|
| [5] | T. A. Chanturia, R. Koplatadze, On oscillatory properties of differential equations with deviating arguments, Tbilisi: Tbilisi University Press, 1977. |
| [6] | I. T. Kiguradze, T. A. Chanturia, Asymptotic properties of solutions of nonautonomous ordinary differential equations, Dordrecht: Springer, 1993. https://doi.org/10.1007/978-94-011-1808-8 |
| [7] |
T. Kusano, B. S. Lalli, On oscillation of half-linear functional-differential equations with deviating arguments, Hiroshima Math. J., 24 (1994), 549–563. https://doi.org/10.32917/hmj/1206127926 doi: 10.32917/hmj/1206127926
|
| [8] |
T. Li, Y. V. Rogovchenko, Oscillation of second-order neutral differential equations, Math. Nachr., 288 (2015), 1150–1162. https://doi.org/10.1002/mana.201300029 doi: 10.1002/mana.201300029
|
| [9] |
M. T. Şenel, T. Candan, B. Çina, Existence of nonoscillatory solutions of second-order nonlinear neutral differential equations with distributed deviating arguments, J. Taibah Uni. Sci., 13 (2019), 998–1005. https://doi.org/10.1080/16583655.2019.1668101 doi: 10.1080/16583655.2019.1668101
|
| [10] | P. Temtek, Oscillation criteria for second-order nonlinear perturbed differential equations, Electron. J. Diff. Equ., 2014 (2014), 103. |