Investigating spectral properties and operator-space distance measurements, this research focused on tridiagonal Toeplitz matrices under perturbed Dirichlet boundary conditions (hereafter referred to as PDDT Toeplitz matrices). Explicit analytical expressions for eigenvalues and their associated eigenvectors were derived. These expressions emphasized their critical role in characterizing stability under perturbation conditions. Building on the structural features of PDDT Toeplitz matrices, we developed closed-form solutions to quantify normality distance and departure from normality. Additionally, these solutions analyzed $ \varepsilon $-pseudospectra and eigenvalue sensitivity at both local and collective scales. By evaluating eigenvalue sensitivity through these parameters, our framework further enabled the evaluation of spectral sensitivity within PDDT Toeplitz environments. Through rigorous analysis, it has been shown that a dramatic increase in eigenvalue sensitivity depended exclusively on the magnitude ratio of lower to upper diagonal entries, demonstrating remarkable independence from diagonal terms or the complex phases of non-diagonal elements. The degree to which a matrix deviated from normality could be effectively characterized by examining the absolute values of its sub-diagonal and super-diagonal elements. To conclude, we explored an inverse eigenvalue problem embedded within a constrained optimization framework, which produced trapezoidal PDDT Toeplitz matrices as final optimal computational solutions.
Citation: Hongxiao Chu, Ziwu Jiang, Xiaoyu Jiang, Yaru Fu, Zhaolin Jiang. Structured distance to normality of PDDT Toeplitz matrices[J]. AIMS Mathematics, 2025, 10(8): 18929-18956. doi: 10.3934/math.2025846
Investigating spectral properties and operator-space distance measurements, this research focused on tridiagonal Toeplitz matrices under perturbed Dirichlet boundary conditions (hereafter referred to as PDDT Toeplitz matrices). Explicit analytical expressions for eigenvalues and their associated eigenvectors were derived. These expressions emphasized their critical role in characterizing stability under perturbation conditions. Building on the structural features of PDDT Toeplitz matrices, we developed closed-form solutions to quantify normality distance and departure from normality. Additionally, these solutions analyzed $ \varepsilon $-pseudospectra and eigenvalue sensitivity at both local and collective scales. By evaluating eigenvalue sensitivity through these parameters, our framework further enabled the evaluation of spectral sensitivity within PDDT Toeplitz environments. Through rigorous analysis, it has been shown that a dramatic increase in eigenvalue sensitivity depended exclusively on the magnitude ratio of lower to upper diagonal entries, demonstrating remarkable independence from diagonal terms or the complex phases of non-diagonal elements. The degree to which a matrix deviated from normality could be effectively characterized by examining the absolute values of its sub-diagonal and super-diagonal elements. To conclude, we explored an inverse eigenvalue problem embedded within a constrained optimization framework, which produced trapezoidal PDDT Toeplitz matrices as final optimal computational solutions.
| [1] |
H. W. Chang, S. E. Liu, R. Burridge, Exact eigensystems for some matrices arising from discretizations, Linear Algebra App., 430 (2009), 999–1006. http://dx.doi.org/10.1016/B978-0-12-775850-3.50017-0 doi: 10.1016/B978-0-12-775850-3.50017-0
|
| [2] |
X. Y. Jiang, G. J. Zhang, Y. P. Zheng, Z. L. Jiang, Explicit potential function and fast algorithm for computing potentials in $\alpha$ $\times$ $\beta$ conic surface resistor network, Expert Syst. Appl., 238 (2024), 122157. https://doi.org/10.1016/j.eswa.2023.122157 doi: 10.1016/j.eswa.2023.122157
|
| [3] |
Z. L. Jiang, Y. F. Zhou, X. Y. Jiang, Y. P. Zheng, Analytical potential formulae and fast algorithm for a horn torus resistor network, Phys. Rev. E, 107 (2023), 044123. https://doi.org/10.1103/PhysRevE.107.044123 doi: 10.1103/PhysRevE.107.044123
|
| [4] |
C. M. Yue, Y. F. Xu, Z. D. Song, H. M. Weng, Y. M. Lu, C. Fang, et al., Symmetry-enforced chiral hinge states and surface quantum anomalous Hall effect in the magnetic axion insulator ${B}{i_{2 - x}}{S}m_x{S}e_3$, Nat. Phys., 15 (2019), 577–581. https://doi.org/10.1038/s41567-019-0457-0 doi: 10.1038/s41567-019-0457-0
|
| [5] |
B. I. Schneider, H. Gharibnejad, Numerical methods every atomic and molecular theorist should know, Nat. Rev. Phys., 2 (2020), 89–102. https://doi.org/10.1038/s42254-019-0126-3 doi: 10.1038/s42254-019-0126-3
|
| [6] |
F. Diele, L. Lopez, The use of the factorization of five-diagonal matrices by tridiagonal Toeplitz matrices, Appl. Math. Lett., 11 (1998), 61–69. https://doi.org/10.1016/S0893-9659(98)00034-2 doi: 10.1016/S0893-9659(98)00034-2
|
| [7] |
D. Fischer, G. Golub, O. Hald, C. Leiva, O. Widlund, On Fourier-Toeplitz methods for separable elliptic problems, Math. Comput., 28 (1974), 349–368. https://doi.org/10.1090/S0025-5718-1974-0415995-2 doi: 10.1090/S0025-5718-1974-0415995-2
|
| [8] |
A. R. Willms, Analytic results for the eigenvalues of certain tridiagonal matrices, SIAM J. Matrix Anal. Appl., 30 (2008), 639–656. https://doi.org/10.1137/070695411 doi: 10.1137/070695411
|
| [9] |
W. C. Yueh, S. S. Cheng, Explicit eigenvalues and inverses of tridiagonal Toeplitz matrices with four perturbed corners, ANZIAM J., 49 (2008), 361–387. https://doi.org/10.1017/S1446181108000102 doi: 10.1017/S1446181108000102
|
| [10] |
A. Luati, T. Proietti, On the spectral properties of matrices associated with trend filters, Econ. Theory, 26 (2010), 1247–1261. https://doi.org/10.1017/S0266466609990715 doi: 10.1017/S0266466609990715
|
| [11] | P. C. Hansen, Rank-deficient and discrete ill-posed problems: Numerical Aspects of Linear Inversion, SIAM, 1998. |
| [12] | L. Reichel, Q. Ye, Simple square smoothing regularization operators, Electron. Trans. Numer. Anal., 33 (2009), 63–83. |
| [13] |
J. Jia, S. Li, On the inverse and determinant of general bordered tridiagonal matrices, Comput. Math. Appl., 69 (2015), 503–509. https://doi.org/10.1016/j.camwa.2015.01.012 doi: 10.1016/j.camwa.2015.01.012
|
| [14] |
T. Sogabe, New algorithms for solving periodic tridiagonal and periodic pentadiagonal linear systems, Appl. Math. Comput., 202 (2008), 850–856. https://doi.org/10.1016/j.amc.2008.03.030 doi: 10.1016/j.amc.2008.03.030
|
| [15] |
Z. Liu, S. Li, Y. Yin, Y. Zhang, Fast solvers for tridiagonal Toeplitz linear systems, Comput. Appl. Math., 39 (2020), 1–10. https://doi.org/10.1007/s40314-020-01369-3 doi: 10.1007/s40314-020-01369-3
|
| [16] |
C. M. Da Fonseca, On the eigenvalues of some tridiagonal matrices, J. Comput. Appl. Math., 200 (2007), 283–286. https://doi.org/10.1016/j.cam.2005.08.047 doi: 10.1016/j.cam.2005.08.047
|
| [17] |
L. Du, T. Sogabe, S. L. Zhang, A fast algorithm for solving tridiagonal quasi-Toeplitz linear systems, Appl. Math. Lett., 75 (2018), 74–81. https://doi.org/10.1016/j.aml.2017.06.016 doi: 10.1016/j.aml.2017.06.016
|
| [18] |
J. Wang, Y. P. Zheng, Z. L. Jiang, Norm equalities and inequalities for tridiagonal perturbed Toeplitz operator matrices, J. Appl. Anal. Comput., 13 (2023), 671–683. https://doi.org/10.11948/20210489 doi: 10.11948/20210489
|
| [19] |
Y. Fu, X. Y. Jiang, Z. L. Jiang, S. Jhang, Properties of a class of perturbed Toeplitz periodic tridiagonal matrices, Comput. Appl. Math., 39 (2020), 1–19. https://doi.org/10.1007/s40314-020-01171-1 doi: 10.1007/s40314-020-01171-1
|
| [20] |
Y. Fu, X. Y. Jiang, Z. L. Jiang, S. Jhang, Inverses and eigenpairs of tridiagonal Toeplitz matrix with opposite-bordered rows, J. Appl. Anal. Comput., 10 (2020), 1599–1613. https://doi.org/10.11948/20190287 doi: 10.11948/20190287
|
| [21] |
Y. Wei, Y. P. Zheng, Z. L. Jiang, S. Shon, The inverses and eigenpairs of tridiagonal Toeplitz matrices with perturbed rows, J. Appl. Math. Comput., 68 (2022), 623–636. https://doi.org/10.1007/s12190-021-01532-x doi: 10.1007/s12190-021-01532-x
|
| [22] |
Y. L. Wei, X. Y. Jiang, Z. L. Jiang, S. Shon, On inverses and eigenpairs of periodic tridiagonal Toeplitz matrices with perturbed corners, J. Appl. Anal. Comput., 10 (2020), 178–191. https://doi.org/10.11948/20190105 doi: 10.11948/20190105
|
| [23] |
Y. Wei, X. Y. Jiang, Z. L. Jiang, S. Shon, Determinants and inverses of perturbed periodic tridiagonal Toeplitz matrices, Adv. Differ. Equ., 2019 (2019), 410. https://doi.org/10.1186/s13662-019-2335-6 doi: 10.1186/s13662-019-2335-6
|
| [24] |
Y. Wei, Y. P. Zheng, Z. L. Jiang, S. Shon, A study of determinants and inverses for periodic tridiagonal Toeplitz matrices with perturbed corners involving Mersenne numbers, Mathematics, 7 (2019), 893. https://doi.org/10.3390/math7100893 doi: 10.3390/math7100893
|
| [25] |
S. Noschese, L. Pasquini, L. Reichel, Tridiagonal Toeplitz matrices: properties and novel applications, Numer. Linear Algebra Appl., 20 (2013), 302–326. https://doi.org/10.1002/nla.1811 doi: 10.1002/nla.1811
|
| [26] |
N. Bebiano, S. Furtado, Structured distance to normality of tridiagonal matrices, Linear Algebra Appl., 552 (2018), 239–255. https://doi.org/10.1016/j.laa.2018.04.023 doi: 10.1016/j.laa.2018.04.023
|
| [27] | J. Demmel, Nearest defective matrices and the geometry of ill-conditioning, New York: Oxford University Press, 1990. |
| [28] | N. J. Higham, Matrix nearness problems and applications, Oxford: Oxford University Press, 1989. |
| [29] |
S. L. Lee, Best available bounds for departure from normality, SIAM J. Matrix Anal. Appl., 17 (1996), 984–991. https://doi.org/10.1137/S0895479895285263 doi: 10.1137/S0895479895285263
|
| [30] | S. Noschese, L. Pasquini, L. Reichel, The structured distance to normality of an irreducible real tridiagonal matrix, Electron. Trans. Numer. Anal., 28 (2007), 65–77. |
| [31] |
S. Noschese, L. Reichel, The structured distance to normality of banded Toeplitz matrices, BIT Numer. Math., 49 (2009), 629–640. https://doi.org/10.1007/s10543-009-0231-2 doi: 10.1007/s10543-009-0231-2
|
| [32] |
X. S. Chen, On estimating the separation of two regular matrix pairs, Numer. Math., 134 (2016), 223–247. https://doi.org/10.1007/s00211-015-0775-9 doi: 10.1007/s00211-015-0775-9
|
| [33] |
X. S. Chen, On estimating the separation of two periodic matrix sequences, BIT Numer. Math., 57 (2017), 75–91. https://doi.org/10.1007/s10543-016-0621-1 doi: 10.1007/s10543-016-0621-1
|
| [34] |
X. S. Chen, P. Lv, On estimating the separation between $(A, B)$ and $(C, D)$ associated with the generalized Sylvester equation $AXD - BXC = E$, J. Comput. Appl. Math., 330 (2018), 128–140. https://doi.org/10.1016/j.cam.2017.07.025 doi: 10.1016/j.cam.2017.07.025
|
| [35] | A. Böttcher, S. M. Grudsky, Spectral properties of banded Toeplitz matrices, SIAM, 2005. |
| [36] |
L. Reichel, L. N. Trefethen, Eigenvalues and pseudo - eigenvalues of Toeplitz matrices, Linear Algebra Appl., 162 (1992), 153–185. https://doi.org/10.1016/0024-3795(92)90374-J doi: 10.1016/0024-3795(92)90374-J
|
| [37] |
M. Arnold, B. N. Datta, Single-input eigenvalue assignment algorithms: a close look, SIAM J. Matrix Anal. Appl., 19 (1998), 444–467. https://doi.org/10.1137/S0895479895294885 doi: 10.1137/S0895479895294885
|
| [38] |
B. Datta, An algorithm to assign eigenvalues in a Hessenberg matrix: single input case, IEEE T. Automat. Contr., 32 (1987), 414–417. https://doi.org/10.1109/TAC.1987.1104622 doi: 10.1109/TAC.1987.1104622
|
| [39] |
B. N. Datta, W. W. Lin, J. N. Wang, Robust partial pole assignment for vibrating systems with aerodynamic effects, IEEE T. Automat. Contr., 51 (2006), 1979–1984. https://doi.org/10.1109/TAC.2006.886543 doi: 10.1109/TAC.2006.886543
|
| [40] |
B. N. Datta, V. Sokolov, A solution of the affine quadratic inverse eigenvalue problem, Linear Algebra Appl., 434 (2011), 1745–1760. https://doi.org/10.1016/j.laa.2010.09.047 doi: 10.1016/j.laa.2010.09.047
|
| [41] |
L. Elsner, M. H. C. Paardekooper, On measures of nonnormality of matrices, Linear Algebra Appl., 92 (1987), 107–123. https://doi.org/10.1016/0024-3795(87)90253-9 doi: 10.1016/0024-3795(87)90253-9
|
| [42] |
P. Henrici, Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices, Numer. Math., 4 (1962), 24–40. https://doi.org/10.1007/BF01386294 doi: 10.1007/BF01386294
|
| [43] |
L. László, An attainable lower bound for the best normal approximation, SIAM J. Matrix Anal. Appl., 15 (1994), 1035–1043. https://doi.org/10.1137/S0895479892232303 doi: 10.1137/S0895479892232303
|
| [44] | L. Smithies, The structured distance to nearly normal matrices, Electron. T. Numer. Ana., 36 (2010), 99–112. |
| [45] |
S. R. Garcia, S. Yih, Supercharacters and the discrete Fourier, cosine, and sine transforms, Commun. Algebra, 46 (2018), 3745–3765. https://doi.org/10.1080/00927872.2018.1424866 doi: 10.1080/00927872.2018.1424866
|
| [46] |
G. H. Golub, J. H. Wilkinson, Ill-conditioned eigensystems and the computation of the Jordan canonical form, SIAM Rev., 18 (1976), 578–619. https://doi.org/10.1137/1018113 doi: 10.1137/1018113
|
| [47] | J. H. Wilkinson, The algebraic eigenvalue problem, Oxford: Clarendon Press, 1965. |
| [48] | J. H. Wilkinson, Sensitivity of eigenvalues Ⅱ, Util. Math., 30 (1986), 243–286. |
| [49] | G. W. Stewart, Matrix perturbation theory, Boston: Academic Press, 1990. |
| [50] |
M. Karow, D. Kressner, F. Tisseur, Structured eigenvalue condition numbers, SIAM J. Matrix Anal. A., 28 (2006), 1052–1068. https://doi.org/10.1137/050628519 doi: 10.1137/050628519
|
| [51] |
S. Noschese, L. Pasquini, Eigenvalue condition numbers: zero-structured versus traditional, J. Comput. Appl. Math., 185 (2006), 174–189. https://doi.org/10.1016/j.cam.2005.01.032 doi: 10.1016/j.cam.2005.01.032
|
| [52] |
S. Noschese, L. Pasquini, Eigenvalue patterned condition numbers: Toeplitz and Hankel cases, J. Comput. Appl. Math., 206 (2007), 615–624. https://doi.org/10.1016/j.cam.2006.08.031 doi: 10.1016/j.cam.2006.08.031
|
| [53] |
S. Noschese, L. Reichel, Eigenvector sensitivity under general and structured perturbations of tridiagonal Toeplitz-type matrices, Appl. Math. Lett., 26 (2019), e2232. https://doi.org/10.1002/nla.2232 doi: 10.1002/nla.2232
|
| [54] | L. N. Trefethen, M. Embree, Spectra and pseudospectra: the behavior of nonnormal matrices and operators, Princeton: Princeton University Press, 2005. |