Some basic theory on the duality of codes over two non-unital rings of order $ 6 $, namely $ H_{23} $ and $ H_{32} $ is presented. For a code $ {{\mathcal C}} $ over these rings, there is an associated binary code $ {{\mathcal C}}_a $ and a ternary code $ {{\mathcal C}}_b $. Self-orthogonal, self-dual, and quasi self-dual (QSD) codes over these rings are characterized using the associated codes $ {{\mathcal C}}_a $ and $ {{\mathcal C}}_b $, and a classification of self-orthogonal codes for short lengths is given. In addition, a building-up construction for self-orthogonal codes is presented, and cyclic and linear complementary dual (LCD) codes over the said rings are introduced.
Citation: Altaf Alshuhail, Rowena Alma Betty, Lucky Galvez. Duality of codes over non-unital rings of order six[J]. AIMS Mathematics, 2025, 10(8): 18784-18800. doi: 10.3934/math.2025839
Some basic theory on the duality of codes over two non-unital rings of order $ 6 $, namely $ H_{23} $ and $ H_{32} $ is presented. For a code $ {{\mathcal C}} $ over these rings, there is an associated binary code $ {{\mathcal C}}_a $ and a ternary code $ {{\mathcal C}}_b $. Self-orthogonal, self-dual, and quasi self-dual (QSD) codes over these rings are characterized using the associated codes $ {{\mathcal C}}_a $ and $ {{\mathcal C}}_b $, and a classification of self-orthogonal codes for short lengths is given. In addition, a building-up construction for self-orthogonal codes is presented, and cyclic and linear complementary dual (LCD) codes over the said rings are introduced.
| [1] | M. Shi, A. Alahmadi, P. Solé, Codes and rings: Theory and practice, Academic Press, 2017. https://doi.org/10.1016/C2016-0-04429-7 |
| [2] |
A. Bonnecaze, P. Udaya, Cyclic codes and self-dual codes over $\mathbb{F}_{2}+u\mathbb{F}_{2}$, IEEE Trans. Inf. Theory, 45 (1999), 1250–1255. https://doi.org/10.1109/18.761278 doi: 10.1109/18.761278
|
| [3] |
H. Lee, Y. Lee, Construction of self-dual codes over finite rings $\mathbb{Z}_{p^m}$, J. Combin. Theory Ser. A, 115 (2008), 407–422. https://doi.org/10.1016/j.jcta.2007.07.001 doi: 10.1016/j.jcta.2007.07.001
|
| [4] |
A. Alahmadi, A. Alshuhail, R. A. Betty, L. Galvez, P. Solé, Mass formula for self-orthogonal and self-dual codes over non-unital rings of order four, Mathematics, 11 (2023), 4736. https://doi.org/10.3390/math11234736 doi: 10.3390/math11234736
|
| [5] |
A. Alahmadi, A. Alshuhail, R. A. Betty, L. Galvez, P. Solé, The mass formula for self-orthogonal and self-dual codes over a non-unitary non-commutative ring, Mathematics, 12 (2024), 862. https://doi.org/10.3390/math12060862 doi: 10.3390/math12060862
|
| [6] |
A. Alahmadi, A. Alshuhail, P. Solé, The mass formula for self-orthogonal and self-dual codes over a non-unitary commutative ring, AIMS Mathematics, 8 (2023), 24367–24378. https://doi.org/10.3934/math.20231242 doi: 10.3934/math.20231242
|
| [7] |
B. Fine, Classification of finite rings of order $p^2$, Math. Mag., 66 (1993), 248–252. https://doi.org/10.1080/0025570X.1993.11996133 doi: 10.1080/0025570X.1993.11996133
|
| [8] |
A. Alahmadi, A. Alkathiry, A. Altassan, W. Basaffar, A. Bonnecaze, H. Shoaib, P. Solé, Type Ⅳ codes over a non-local non-unital ring, Proyecciones (Antofagasta), 39 (2020), 963–978. https://doi.org/10.22199/issn.0717-6279-2020-04-0060 doi: 10.22199/issn.0717-6279-2020-04-0060
|
| [9] |
A. Alahmadi, A. Melaibari, P. Solé, Duality of codes over non-unital rings of order four, IEEE Access, 11 (2023), 53120–53133. https://doi.org/10.1109/ACCESS.2023.3261131 doi: 10.1109/ACCESS.2023.3261131
|
| [10] |
M. Shi, S. Li, J.-L. Kim, P. Solé, LCD and ACD codes over a noncommutative non-unital ring with four elements, Cryptogr. Commun., 14 (2022), 627–640. https://doi.org/10.1007/s12095-021-00545-4 doi: 10.1007/s12095-021-00545-4
|
| [11] |
A. Alahmadi, M. Altaiary, P. Solé, Cyclic codes over a non-commutative non-unital ring, Mathematics, 12 (2024), 2014. https://doi.org/10.3390/math12132014 doi: 10.3390/math12132014
|
| [12] |
A. Alahmadi, M. Altaiary, P. Solé, Cyclic codes over a non-local non-unital ring, Mathematics, 12 (2024), 866. https://doi.org/10.3390/math12060866 doi: 10.3390/math12060866
|
| [13] |
A. Alahmadi, A. Alkathiry, A. Altassan, A. Bonnecaze, H. Shoaib, P. Solé, The build-up construction over a commutative non-unital ring, Des. Codes Cryptogr., 90 (2022), 3003–3010. https://doi.org/10.1007/s10623-022-01044-0 doi: 10.1007/s10623-022-01044-0
|
| [14] |
A. Alahmadi, T. Alihia, P. Solé, The build-up construction for codes over a non-commutative non-unitary ring of order 9, AIMS Mathematics, 9 (2024), 18278–18307. https://doi.org/10.3934/math.2024892 doi: 10.3934/math.2024892
|
| [15] |
A. Alahmadi, A. Alkathiry, A. Altassan, W. Basaffar, A. Bonnecaze, H. Shoaib, et al., Quasi self-dual codes over non-unital rings of order six, Proyecciones (Antofagasta), 39 (2020), 1083–1095. http://dx.doi.org/10.22199/issn.0717-6279-2020-04-0066 doi: 10.22199/issn.0717-6279-2020-04-0066
|
| [16] | S. Bouyuklieva, Optimal binary LCD codes, Des. Codes Cryptogr., 89 (2021), 2445–2461. https://doi.org/10.1007/s10623-021-00929-w |
| [17] |
C. Carlet, S. Mesnager, C. Tang, Y. Qi, New characterization and parametrization of LCD codes, IEEE Trans. Inf. Theory, 65 (2018), 39–49. https://doi.org/10.1109/TIT.2018.2829873 doi: 10.1109/TIT.2018.2829873
|
| [18] |
W. Bosma, J. Cannon, C. Playoust, The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235–265. https://doi.org/10.1006/jsco.1996.0125 doi: 10.1006/jsco.1996.0125
|