Research article

Oscillation of solutions for second-order neutral multi-delay differential equations

  • Received: 21 June 2025 Revised: 01 August 2025 Accepted: 08 August 2025 Published: 18 August 2025
  • MSC : 34K11

  • This paper investigates the oscillatory behavior of solutions for a class of second-order neutral differential equations with multiple delays. By employing rigorous analytical methods, we establish sufficient oscillation criteria that guarantee solutions exhibit oscillatory characteristics under prescribed conditions. The main results extend existing theory by incorporating multiple delay terms and nonlinear effects, thereby broadening the applicability of oscillation theory to more complex neutral delay differential equations. A detailed mathematical analysis is conducted to explore the influence of nonlinear terms and various delay functions on the solutions. It is shown that, despite these factors influencing the specific trajectory and amplitude of oscillations, the global oscillatory nature of the solutions remains intact provided that the proposed conditions are met. Numerical experiments illustrate interaction effects among multiple delays; in some settings, the amplitude envelope may show transitions in decay rate. This research thus provides both theoretical insights and practical implications, forming a solid foundation for future studies into more general nonlinear equations, higher-order neutral equations, and systems involving neutral differential equations with delays.

    Citation: Lanshuo Hua, Jiaxuan Sun, Wenjin Li, Yanni Pang. Oscillation of solutions for second-order neutral multi-delay differential equations[J]. AIMS Mathematics, 2025, 10(8): 18586-18602. doi: 10.3934/math.2025830

    Related Papers:

  • This paper investigates the oscillatory behavior of solutions for a class of second-order neutral differential equations with multiple delays. By employing rigorous analytical methods, we establish sufficient oscillation criteria that guarantee solutions exhibit oscillatory characteristics under prescribed conditions. The main results extend existing theory by incorporating multiple delay terms and nonlinear effects, thereby broadening the applicability of oscillation theory to more complex neutral delay differential equations. A detailed mathematical analysis is conducted to explore the influence of nonlinear terms and various delay functions on the solutions. It is shown that, despite these factors influencing the specific trajectory and amplitude of oscillations, the global oscillatory nature of the solutions remains intact provided that the proposed conditions are met. Numerical experiments illustrate interaction effects among multiple delays; in some settings, the amplitude envelope may show transitions in decay rate. This research thus provides both theoretical insights and practical implications, forming a solid foundation for future studies into more general nonlinear equations, higher-order neutral equations, and systems involving neutral differential equations with delays.



    加载中


    [1] K. Gopalsamy, Stability and oscillations in delay differential equations of population dynamics, Vol. 74, Springer Dordrecht, 1992. https://doi.org/10.1007/978-94-015-7920-9
    [2] K. P. Hadeler, Neutral delay equations from and for population dynamics, Electron. J. Qual. Theory Differ. Equ., 2007, 1–18. https://doi.org/10.14232/ejqtde.2007.7.11 doi: 10.14232/ejqtde.2007.7.11
    [3] M. V. Barbarossa, K. P. Hadeler, C. Kuttler, State-dependent neutral delay equations from population dynamics, J. Math. Biol., 69 (2014), 1027–1056. https://doi.org/10.1007/s00285-014-0821-8 doi: 10.1007/s00285-014-0821-8
    [4] I. Györi, G. Ladas, Oscillation theory of delay differential equations: with applications, Oxford University Press, 1991, https://doi.org/10.1093/oso/9780198535829.001.0001
    [5] J. K. Hale, Functional differential equations, 1 Ed., Vol. 3, Springer New York, 1971. https://doi.org/10.1007/978-1-4615-9968-5
    [6] D. D. Bainov, D. P. Mishev, Oscillation theory for neutral differential equations with delay, 1 Ed., CRC Press, 1991,
    [7] J. S. W. Wong, A second order nonlinear oscillation theorem, Proc. Amer. Math. Soc., 40 (1973), 487–491. https://doi.org/10.1090/s0002-9939-1973-0318585-6 doi: 10.1090/s0002-9939-1973-0318585-6
    [8] R. Agarwal, S. L. Shieh, C. C. Yeh, Oscillation criteria for second-order retarded differential equations, Math. Comput. Model., 26 (1997), 1–11. https://doi.org/10.1016/s0895-7177(97)00141-6 doi: 10.1016/s0895-7177(97)00141-6
    [9] Y. Şahiner, On oscillation of second order neutral type delay differential equations, Appl. Math. Comput., 150 (2004), 697–706. https://doi.org/10.1016/s0096-3003(03)00300-x doi: 10.1016/s0096-3003(03)00300-x
    [10] B. Baculíková, J. Džurina, Oscillation theorems for second-order nonlinear neutral differential equations, Comput. Math. Appl., 62 (2011), 4472–4478. https://doi.org/10.1016/j.camwa.2011.10.024 doi: 10.1016/j.camwa.2011.10.024
    [11] A. Al-Jaser, C. Cesarano, B. Qaraad, L. F. Iambor, Second-order damped differential equations with superlinear neutral term: new criteria for oscillation, Axioms, 13 (2024), 234. https://doi.org/10.3390/axioms13040234 doi: 10.3390/axioms13040234
    [12] O. Moaaz, P. Kumam, O. Bazighifan, On the oscillatory behavior of a class of fourth-order nonlinear differential equation, Symmetry, 12 (2020), 524. https://doi.org/10.3390/sym12040524 doi: 10.3390/sym12040524
    [13] A. Muhib, E. M. Elabbasy, O. Moaaz, New oscillation criteria for differential equations with sublinear and superlinear neutral terms, Turk. J. Math., 45 (2021), 919–928, https://doi.org/10.3906/mat-2012-11 doi: 10.3906/mat-2012-11
    [14] B. Almarri, A. H. Ali, A. M. Lopes, O. Bazighifan, Nonlinear differential equations with distributed delay: some new oscillatory solutions, Mathematics, 10 (2022), 995. https://doi.org/10.3390/math10060995 doi: 10.3390/math10060995
    [15] O. Bazighifan, A. H. Ali, F. Mofarreh, Y. N. Raffoul, Extended approach to the asymptotic behavior and symmetric solutions of advanced differential equations, Symmetry, 14 (2022), 686. https://doi.org/10.3390/sym14040686 doi: 10.3390/sym14040686
    [16] C. Huang, B. Liu, H. Yang, J. Cao, Positive almost periodicity on sicnns incorporating mixed delays and d operator, Nonlinear Anal.: Modell. Control, 27 (2022), 719–739. https://doi.org/10.15388/namc.2022.27.27417 doi: 10.15388/namc.2022.27.27417
    [17] C. Huang, X. Ding, Q. Wang, Asymptotic stability analysis on a neutral Nicholson's blowflies equation with time-varying delays, Electron. J. Qual. Theory Differ. Equ., 2025, 1–15. https://doi.org/10.14232/ejqtde.2025.1.26 doi: 10.14232/ejqtde.2025.1.26
    [18] C. Huang, X. Ding, Q. Wang, Positive periodic stability to a neutral Nicholson's blowflies model, Qual. Theory Dyn. Syst., 24 (2025), 140. https://doi.org/10.1007/s12346-025-01295-x doi: 10.1007/s12346-025-01295-x
    [19] M. Aldiaiji, B. Qaraad, L. F. Iambor, E. M. Elabbasy, New oscillation theorems for second-order superlinear neutral differential equations with variable damping terms, Symmetry, 15 (2023), 1630. https://doi.org/10.3390/sym15091630 doi: 10.3390/sym15091630
    [20] R. Xu, F. Meng, New kamenev-type oscillation criteria for second order neutral nonlinear differential equations, Appl. Math. Comput., 188 (2007), 1364–1370. https://doi.org/10.1016/j.amc.2006.11.004 doi: 10.1016/j.amc.2006.11.004
    [21] L. Liu, Y. Bai, New oscillation criteria for second-order nonlinear neutral delay differential equations, J. Comput. Appl. Math., 231 (2009), 657–663. https://doi.org/10.1016/j.cam.2009.04.009 doi: 10.1016/j.cam.2009.04.009
    [22] S. R. Grace, J. Džurina, I. Jadlovská, T. Li, An improved approach for studying oscillation of second-order neutral delay differential equations, J. Inequal. Appl., 2018 (2018), 193. https://doi.org/10.1186/s13660-018-1767-y doi: 10.1186/s13660-018-1767-y
    [23] W. S. Cheung, J. Ren, W. Han, Positive periodic solution of second-order neutral functional differential equations, Nonlinear Anal.: Theory Meth. Appl., 71 (2009), 3948–3955. https://doi.org/10.1016/j.na.2009.02.064 doi: 10.1016/j.na.2009.02.064
    [24] E. Hernández, H. R. Henríquez, M. A. McKibben, Existence results for abstract impulsive second-order neutral functional differential equations, Nonlinear Anal.: Theory Meth. Appl., 70 (2009), 2736–2751. https://doi.org/10.1016/j.na.2008.03.062 doi: 10.1016/j.na.2008.03.062
    [25] S. Lu, W. Ge, Existence of periodic solutions for a kind of second-order neutral functional differential equation, Appl. Math. Comput., 157 (2004), 433–448. https://doi.org/10.1016/j.amc.2003.08.044 doi: 10.1016/j.amc.2003.08.044
    [26] G. A. Kent, Optimal control of functional differential equations of neutral type, Ph.D. Thesis, Brown University, 1971.
    [27] R. T. Yanushevsky, Optimal control of linear differential-difference systems of neutral type, Int. J. Control, 49 (1989), 1835–1850. https://doi.org/10.1080/00207178908559746 doi: 10.1080/00207178908559746
    [28] O. Moaaz, I. Dassios, O. Bazighifan, A. Muhib, Oscillation theorems for nonlinear differential equations of fourth-order, Mathematics, 8 (2020), 520. https://doi.org/10.3390/math8040520 doi: 10.3390/math8040520
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(561) PDF downloads(72) Cited by(2)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog