This work studied the optimal reinsurance design in a duopolistic market comprising two types of insurers and two reinsurers under asymmetric information, where reinsurers cannot directly observe insurers' risk types. We modeled reinsurers as risk-neutral agents maximizing expected net profit, subject to individual rationality, incentive compatibility, and convex preference constraints. We introduced the principle of Pareto optimality to formulate the objective function in a multi-agent setting. Applying the Lagrange dual approach, we derived optimal reinsurance menus for all cases. Under the Value-at-Risk (VaR) risk measure, we identified the globally optimal reinsurance menu by comparative analysis and provided its closed-form solution. Furthermore, we compared exponential and Pareto distributions with identical expected losses to study tail risk effects.
Citation: Haonan Ma, Ying Fang. Pareto-optimal reinsurance design in a duopoly market with asymmetric information[J]. AIMS Mathematics, 2025, 10(8): 18494-18523. doi: 10.3934/math.2025826
This work studied the optimal reinsurance design in a duopolistic market comprising two types of insurers and two reinsurers under asymmetric information, where reinsurers cannot directly observe insurers' risk types. We modeled reinsurers as risk-neutral agents maximizing expected net profit, subject to individual rationality, incentive compatibility, and convex preference constraints. We introduced the principle of Pareto optimality to formulate the objective function in a multi-agent setting. Applying the Lagrange dual approach, we derived optimal reinsurance menus for all cases. Under the Value-at-Risk (VaR) risk measure, we identified the globally optimal reinsurance menu by comparative analysis and provided its closed-form solution. Furthermore, we compared exponential and Pareto distributions with identical expected losses to study tail risk effects.
| [1] |
K. Borch, The safety loading of reinsurance premiums, Scand. Actuar. J., 43 (1960), 163–184. https://doi.org/10.2307/334458 doi: 10.2307/334458
|
| [2] | K. Arrow, Uncertainty and the welfare economics of medical care, Amer. Econ. Rev., 53 (1963), 941–973. |
| [3] |
H. Bühlmann, An economic premium principle, ASTIN Bull., 11 (1980), 52–60. https://doi.org/10.1017/S0515036100006619 doi: 10.1017/S0515036100006619
|
| [4] |
J. Cai, C. Lemieux, F. Liu, Optimal reinsurance from the perspectives of both an insurer and a reinsurer, ASTIN Bull., 46 (2016), 815–849. https://doi.org/10.1017/asb.2015.23 doi: 10.1017/asb.2015.23
|
| [5] |
W. Jiang, H. Hong, J. Ren, On Pareto-optimal reinsurance with constraints under distortion risk measures, Eur. Actuar. J., 8 (2018), 215–243. https://doi.org/10.1007/s13385-017-0163-1 doi: 10.1007/s13385-017-0163-1
|
| [6] |
T. J. Boonen, W. Jiang, Pareto-optimal insurance under robust distortion risk measures, EJOR, 324 (2025), 690–705. https://doi.org/10.1016/j.insmatheco.2012.12.001 doi: 10.1016/j.insmatheco.2012.12.001
|
| [7] |
W. Jiang, Pareto-optimal insurance under heterogeneous beliefs and incentive compatibility, Scand. Actuar. J., 9 (2022), 775–793. https://doi.org/10.1080/03461238.2022.2028185 doi: 10.1080/03461238.2022.2028185
|
| [8] | F. Chang, Y. Fang, Pareto-optimal reinsurance under Vajda condition and heterogenous beliefs, Commun. Stat. Theor. Meth., (2025), 1–28. https://doi.org/10.1080/03610926.2025.2485340 |
| [9] | R. Arnott, J. Stiglitz, Equilibrium in competitive insurance markets: an essay on the economics of imperfect information, Uncert. Econ., (1978), 257–280. https://doi.org/10.1016/B978-0-12-214850-7.50024-3 |
| [10] |
J. E. Stiglitz, Monopoly, non-linear pricing and imperfect information: the insurance market, Rev. Econ. Stud., 44 (1977), 407–430. https://doi.org/10.2307/2296899 doi: 10.2307/2296899
|
| [11] |
K. C. Cheung, S. C. P. Yam, F. L. Yuen, Reinsurance contract design with adverse selection, Scand. Actuar. J., 9 (2019), 784–798. https://doi.org/10.1080/03461238.2019.1616323 doi: 10.1080/03461238.2019.1616323
|
| [12] |
K. C. Cheung, S. C. P. Yam, F. L. Yuen, Y. Zhang, Concave distortion risk minimizing reinsurance design under adverse selection, Insur. Math. Econ., 91 (2020), 155–165. https://doi.org/10.1016/j.insmatheco.2020.02.001 doi: 10.1016/j.insmatheco.2020.02.001
|
| [13] |
T. J. Boonen, Y. Zhang, Optimal reinsurance design with distortion risk measures and asymmetric information, ASTIN Bull., 51 (2021), 607–629. https://doi.org/10.1017/asb.2021.8 doi: 10.1017/asb.2021.8
|
| [14] |
Z. Liang, J. Zou, W. Jiang, Revisiting the optimal insurance design under adverse selection: Distortion risk measures and tail-risk overestimation, Insur. Math. Econ., 104 (2022), 200–221. https://doi.org/10.1016/j.insmatheco.2022.03.002 doi: 10.1016/j.insmatheco.2022.03.002
|
| [15] |
M. E. Yaari, The dual theory of choice under risk, Econometrica, 55 (1987), 95–115. https://doi.org/10.2307/1911158 doi: 10.2307/1911158
|
| [16] |
S. Wang, Premium Calculation by Transforming the Layer Premium Density, ASTIN Bull., 26 (1996), 71–92. https://doi.org/10.2143/AST.26.1.563234 doi: 10.2143/AST.26.1.563234
|
| [17] |
J. Belles-Sampera, M. Guillén, M. Santolino, Beyond value-at-risk: GlueVaR distortion risk measures, Risk Anal., 34 (2014), 121–134. https://doi.org/10.1111/risa.12080 doi: 10.1111/risa.12080
|
| [18] | M. Santolino, J. Belles-Sampera, M. Guillén I Estany, J. M. Sarabia, An examination of the tail contribution to distortion risk measures, J. Risk, 23 (2019). |
| [19] |
C. Bernard, S. M. Pesenti, S. Vanduffel, Robust distortion risk measures, Math. Finance, 34 (2023), 774–818. https://doi.org/10.1111/mafi.12414 doi: 10.1111/mafi.12414
|
| [20] |
A. V. Asimit, T. J. Boonen, Y. Chi, W. F. Chong, Risk sharing with multiple indemnity environments, Eur. J. Oper. Res., 295 (2021), 587–603. https://doi.org/10.1016/j.ejor.2021.03.012 doi: 10.1016/j.ejor.2021.03.012
|
| [21] |
T. J. Boonen, K. Tan, S. Zhuang, Optimal reinsurance with multiple reinsurers: Competitive pricing and coalition stability, Insur. Math. Econ., 101 (2021), 302–319. https://doi.org/10.1016/j.insmatheco.2021.08.005 doi: 10.1016/j.insmatheco.2021.08.005
|
| [22] |
G. Huberman, D. Mayers, J. R. Smith, Optimal insurance policy indemnity schedules, Bell J. Econ., 14 (1983), 415–426. https://doi.org/10.2307/3003643 doi: 10.2307/3003643
|
| [23] | A. Nekvinda, L. Zajíček, A simple proof of the Rademacher theorem, Čas. Pest. Mat., 4 (1988), 337–341. |
| [24] |
H. Assa, On optimal reinsurance policy with distortion risk measures and premiums, Insur. Math. Econ., 61 (2015), 70–75. https://doi.org/10.1016/j.insmatheco.2014.11.007 doi: 10.1016/j.insmatheco.2014.11.007
|
| [25] | L. Yin, Game-theoretic analysis of commodity price convergence, Shandong Econ., 1 (2004), 21–23. |
| [26] | H. Gerber, An introduction to mathematical risk theory, 1 Eds., Philadelphia: Huebner Foundation for Insurance Education, 1979. http://dx.doi.org/10.1016/B978-0-12-775850-3.50017-0 |
| [27] |
Y. Chi, W. Wei, Optimal insurance with background risk: An analysis of general dependence structures, Financ. Stoch., 4 (2020), 903–937. https://doi.org/10.1007/s00780-020-00429-0 doi: 10.1007/s00780-020-00429-0
|
| [28] | W. Rudin, Principles of mathematical analysis, 3 Eds., New York: McGraw-Hill, 1976. |
| [29] |
S. Zhuang, C. Weng, K. Tan, H. Assa, Marginal indemnification function formulation for optimal reinsurance, Insur. Math. Econ., 67 (2016), 65–76. https://doi.org/10.1016/j.insmatheco.2015.12.003 doi: 10.1016/j.insmatheco.2015.12.003
|