Research article Special Issues

Modulation instability and soliton families of the complex Ginzburg-Landau equation having the parabolic with nonlocal law of self-phase modulation

  • Published: 13 August 2025
  • MSC : 35Q51, 35C08, 35Q56

  • This paper acquaints the adopted parabolic with the nonlocal law of self-phase modulation form of the complex Ginzburg–Landau model, which regularizes the evolution of specific amplitudes of instability pulses in diverse dissipative systems. We employ the new Kudryashov and Sinh-Gordon equation expansion schemes to obtain bright and dark soliton families under particular conditions on the parameters of the physical model. Furthermore, the effect of diverse model parameters such as the chromatic dispersion, the parabolic law, and the nonlocal nonlinearity terms on the behaviors of bright and dark soliton solutions is also explored. We also search for modulation instability analysis for the model. The primary contribution of this study is the examination of a different version of the complex Ginzburg–Landau model, which is not yet available in the literature, along with the first comprehensive analysis of its modulation instability. Thus, this study highlights the practical and prompt results received by the Sinh-Gordon equation expansion scheme. Thus, this study is expected to offer meaningful implications for ongoing and future research within the framework of this model.

    Citation: Wael W. Mohammed, Neslihan Ozdemir, Aydın Secer, Muslum Ozisik, Mustafa Bayram, Taha Radwan, Karim K. Ahmed. Modulation instability and soliton families of the complex Ginzburg-Landau equation having the parabolic with nonlocal law of self-phase modulation[J]. AIMS Mathematics, 2025, 10(8): 18321-18336. doi: 10.3934/math.2025818

    Related Papers:

  • This paper acquaints the adopted parabolic with the nonlocal law of self-phase modulation form of the complex Ginzburg–Landau model, which regularizes the evolution of specific amplitudes of instability pulses in diverse dissipative systems. We employ the new Kudryashov and Sinh-Gordon equation expansion schemes to obtain bright and dark soliton families under particular conditions on the parameters of the physical model. Furthermore, the effect of diverse model parameters such as the chromatic dispersion, the parabolic law, and the nonlocal nonlinearity terms on the behaviors of bright and dark soliton solutions is also explored. We also search for modulation instability analysis for the model. The primary contribution of this study is the examination of a different version of the complex Ginzburg–Landau model, which is not yet available in the literature, along with the first comprehensive analysis of its modulation instability. Thus, this study highlights the practical and prompt results received by the Sinh-Gordon equation expansion scheme. Thus, this study is expected to offer meaningful implications for ongoing and future research within the framework of this model.



    加载中


    [1] S. R. Acherman, Heike Kamerlingh Onnes: Master of experimental technique and quantitative research, Phys. Perspect., 6 (2004), 197–223. https://doi.org/10.1007/s00016-003-0193-8 doi: 10.1007/s00016-003-0193-8
    [2] J. Bardeen, L. N. Cooper, J. R. Schrieffer, Theory of superconductivity, Phys. Rev., 108 (1957), 1175. https://doi.org/10.1103/PhysRev.108.1175 doi: 10.1103/PhysRev.108.1175
    [3] V. L. Ginzburg, On the theory of superconductivity, Nuovo Cim., 2 (1955), 1234–1250. https://doi.org/10.1007/BF02731579. doi: 10.1007/BF02731579
    [4] A. Shabat, V. Zakharov, Exact theory of two-dimensional self-focusing and one-dimensional selfmodulation of waves in nonlinear media, Sov. Phys. JETP, 34 (1972), 62. Available from: http://www.jetp.ras.ru/cgi-bin/dn/e_034_01_0062.pdf.
    [5] N. N. Akhmediev, A. Ankiewicz, Nonlinear pulses and beams, New York: Springer, 1997.
    [6] M. Mirzazadeh, Soliton solutions of Davey–Stewartson equation by trial equation method and ansatz approach, Nonlinear Dynam., 82 (2015), 1775–1780. https://doi.org/10.1007/S11071-015-2276-X doi: 10.1007/S11071-015-2276-X
    [7] K. K. Ahmed, H. M. Ahmed, N. M. Badra, M. Mirzazadeh, W. B. Rabie, M. Eslami, Diverse exact solutions to Davey–Stewartson model using modified extended mapping method, Nonlinear Anal.-Model., 29 (2024), 983–1002. https://doi.org/10.15388/namc.2024.29.36103 doi: 10.15388/namc.2024.29.36103
    [8] Y. Wang, B. Zhang, B. Cao, The exact solutions of generalized Davey-Stewartson equations with arbitrary power nonlinearities using the dynamical system and the first integral methods, Open Math., 20 (2022), 894–910. https://doi.org/10.1515/math-2022-0469 doi: 10.1515/math-2022-0469
    [9] M. Lakshmanan, K. Porsezian, M. Daniel, Effect of discreteness on the continuum limit of the Heisen- berg spin chain, Phys. Lett. A, 133 (1988), 483–488. https://doi.org/10.1016/0375-9601(88)90520-8 doi: 10.1016/0375-9601(88)90520-8
    [10] A. Biswas, D. Milovic, Bright and dark solitons of the generalized nonlinear Schrödinger's equation, Commun. Nonlinear Sci., 15 (2010), 1473–1484. https://doi.org/10.1016/j.cnsns.2009.06.017 doi: 10.1016/j.cnsns.2009.06.017
    [11] E. M. Zayed, R. M. Shohib, M. E. Alngar, Dispersive optical solitons with Biswas–Milovic equation having dual-power law nonlinearity and multiplicative white noise via Itô calculus, Optik, 270 (2022), 169951. https://doi.org/10.1016/j.ijleo.2022.169951 doi: 10.1016/j.ijleo.2022.169951
    [12] N. A. Kudryashov, Optical solitons of the Chen–Lee–Liu equation with arbitrary refractive index, Optik, 247 (2021), 167935. https://doi.org/10.1016/j.ijleo.2021.167935 doi: 10.1016/j.ijleo.2021.167935
    [13] J. Zhang, W. Liu, D. Qiu, Y. Zhang, K. Porsezian, J. He, Rogue wave solutions of a higher-order Chen–Lee–Liu equation, Phys. Scripta, 90 (2015), 055207. https://dx.doi.org/10.1088/0031-8949/90/5/055207 doi: 10.1088/0031-8949/90/5/055207
    [14] Y. Yıldırım, Optical soliton molecules of Manakov model by trial equation technique, Optik, 185 (2019), 1146–1151. https://doi.org/10.1016/j.ijleo.2019.04.041 doi: 10.1016/j.ijleo.2019.04.041
    [15] K. Hosseini, M. Mirzazadeh, M. Ilie, S. Radmehr, Dynamics of optical solitons in the perturbed Gerdjikov–Ivanov equation, Optik, 206 (2020), 164350. https://doi.org/10.1016/j.ijleo.2020.164350 doi: 10.1016/j.ijleo.2020.164350
    [16] A. Biswas, Y. Yildirim, E. Yasar, H. Triki, A. S. Alshomrani, M. Z. Ullah, et al., Optical soliton perturbation with Gerdjikov–Ivanov equation by modified simple equation method, Optik, 157 (2018), 1235–1240. https://doi.org/10.1016/j.ijleo.2017.12.101 doi: 10.1016/j.ijleo.2017.12.101
    [17] K. J. Wang, The generalized $(3+1)$-dimensional B-type Kadomtsev–Petviashvili equation: Resonant multiple soliton, N-soliton, soliton molecules and the interaction solutions, Nonlinear Dynam., 112 (2024), 7309–7324. https://doi.org/10.1007/s11071-024-09356-7 doi: 10.1007/s11071-024-09356-7
    [18] N. A. Kudryashov, Optical solitons of the Schrödinger–Hirota equation of the fourth order, Optik, 274 (2023), 170587. https://doi.org/10.1016/j.ijleo.2023.170587 doi: 10.1016/j.ijleo.2023.170587
    [19] K. J. Wang, J. Si, Optical solitons to the Radhakrishnan–Kundu–Lakshmanan equation by two effective approaches, Eur. Phys. J. Plus, 137 (2022), 1–10. https://doi.org/10.1140/epjp/s13360-022-03239-9 doi: 10.1140/epjp/s13360-022-03239-9
    [20] Z. Li, Optical solutions of the nonlinear Kodama equation with the M-truncated derivative via the extended $(G^{\prime}/G)$-expansion method, Fractal Fract., 9 (2025), 300. https://doi.org/10.3390/fractalfract9050300 doi: 10.3390/fractalfract9050300
    [21] K. J. Wang, Resonant multiple wave, periodic wave and interaction solutions of the new extended $(3+1)$-dimensional Boiti-Leon-Manna-Pempinelli equation, Nonlinear Dynam., 111 (2023), 16427–16439. https://doi.org/10.1007/s11071-023-08699-x doi: 10.1007/s11071-023-08699-x
    [22] K. K. Ahmed, H. M. Ahmed, W. B. Rabie, M. F. Shehab, Effect of noise on wave solitons for $(3+1)$-dimensional nonlinear schrödinger equation in optical fiber, Indian J. Phys., 98 (2024), 4863–4882. https://doi.org/10.1007/s12648-024-03222-3 doi: 10.1007/s12648-024-03222-3
    [23] M. Cyrot, Ginzburg-Landau theory for superconductors, Rep. Prog. Phys., 36 (1973), 103. https://doi.org/10.1088/0034-4885/36/2/001 doi: 10.1088/0034-4885/36/2/001
    [24] M. Alabedalhadi, M. A. Smadi, S. A. Omari, Y. Karaca, S. Momani, New bright and kink soliton solutions for fractional complex Ginzburg–Landau equation with non-local nonlinearity term, Fractal Fract., 6 (2022), 724. https://doi.org/10.3390/fractalfract6120724 doi: 10.3390/fractalfract6120724
    [25] K. Hosseini, M. Mirzazadeh, D. Baleanu, N. Raza, C. Park, A. Ahmadian, et al., The generalized complex Ginzburg–Landau model and its dark and bright soliton solutions, Eur. Phys. J. Plus, 136 (2021), 1–12. https://doi.org/10.1140/epjp/s13360-021-01637-z doi: 10.1140/epjp/s13360-021-01637-z
    [26] B. Nawaz, K. Ali, S. Rizvi, M. Younis, Soliton solutions for quintic complex Ginzburg-Landau model, Superlattice. Microst., 110 (2017), 49–56. https://doi.org/10.1016/j.spmi.2017.09.006 doi: 10.1016/j.spmi.2017.09.006
    [27] Y. Qiu, B. A. Malomed, D. Mihalache, X. Zhu, L. Zhang, Y. He, Soliton dynamics in a fractional complex Ginzburg–Landau model, Chaos Soliton. Fract., 131 (2020), 109471. https://doi.org/10.1016/j.chaos.2019.109471 doi: 10.1016/j.chaos.2019.109471
    [28] K. S. A. Ghafri, Soliton behaviours for the conformable space–time fractional complex Ginzburg–Landau equation in optical fibers, Symmetry, 12 (2020), 219. https://doi.org/10.3390/sym12020219 doi: 10.3390/sym12020219
    [29] A. Yusuf, M. Inc, A. I. Aliyu, D. Baleanu, Optical solitons for complex Ginzburg-Landau model with Beta derivative in nonlinear optics, J. Adv. Phys., 7 (2018), 224–229.
    [30] A. H. Arnous, L. Moraru, Optical solitons with the complex Ginzburg–Landau equation with Kudryashov's law of refractive index, Mathematics, 10 (2022), 3456. https://doi.org/10.3390/math10193456 doi: 10.3390/math10193456
    [31] M. Y. Wang, Optical solitons with perturbed complex Ginzburg–Landau equation in Kerr and cubic–quintic–septic nonlinearity, Results Phys., 33 (2022), 105077. https://doi.org/10.1016/j.rinp.2021.105077 doi: 10.1016/j.rinp.2021.105077
    [32] M. Djoko, T. Kofane, The cubic–quintic–septic complex Ginzburg–Landau equation formulation of optical pulse propagation in 3D doped Kerr media with higher-order dispersions, Opt. Commun., 416 (2018), 190–201. https://doi.org/10.1016/j.optcom.2018.02.027 doi: 10.1016/j.optcom.2018.02.027
    [33] N. A. Kudryashov, Q. Zhou, C. Q. Dai, Solitary waves of the complex Ginzburg-Landau equation with anti-cubic nonlinearity, Phys. Lett. A, 490 (2023), 129172. https://doi.org/10.1016/j.physleta.2023.129172 doi: 10.1016/j.physleta.2023.129172
    [34] E. M. Zayed, A. H. Arnous, A. Secer, M. Ozisik, M. Bayram, N. A. Shah, et al., High dispersion and cubic-quintic-septic-nonic nonlinearity effects on optical solitons in the complex Ginzburg–Landau equation of eighth-order with multiplicative white noise in the Itô sense, Results Phys., 2024, 107439. https://doi.org/10.1016/j.rinp.2024.107439 doi: 10.1016/j.rinp.2024.107439
    [35] N. A. Kudryashov, Exact solutions of the complex Ginzburg–Landau equation with law of four powers of nonlinearity, Optik, 265 (2022), 169548. https://doi.org/10.1016/j.ijleo.2022.169548 doi: 10.1016/j.ijleo.2022.169548
    [36] A. H. Arnous, A. R. Seadawy, R. T. Alqahtani, A. Biswas, Optical solitons with complex Ginzburg–Landau equation by modified simple equation method, Optik, 144 (2017), 475–480. https://doi.org/10.1016/j.ijleo.2017.07.013 doi: 10.1016/j.ijleo.2017.07.013
    [37] M. Ozisik, A. Secer, M. Bayram, H. Aydin, An encyclopedia of Kudryashov's integrability approaches applicable to optoelectronic devices, Optik, 265 (2022), 169499. https://doi.org/10.1016/j.ijleo.2022.169499 doi: 10.1016/j.ijleo.2022.169499
    [38] N. A. Kudryashov, Method for finding highly dispersive optical solitons of nonlinear differential equations, Optik, 206 (2020), 163550. https://doi.org/10.1016/j.ijleo.2019.163550 doi: 10.1016/j.ijleo.2019.163550
    [39] Z. Yan, Jacobi elliptic function solutions of nonlinear wave equations via the new sinh-Gordon equation expansion method, J. Phys. A-Math. Gen., 36 (2003), 1961. https://doi.org/10.1088/0305-4470/36/7/311 doi: 10.1088/0305-4470/36/7/311
    [40] G. P. Agarwal, Nonlinear fiber optics, 5 Eds., Chapter 5-Optical solitons, Boston: Academic Press, 2013,129–191. https://doi.org/10.1016/B978-0-12-397023-7.00005-X
    [41] Y. H. Liang, K. J. Wang, X. Z. Hou, Multiple kink-soliton, breather wave, interaction wave and the travelling wave solutions to the fractional $(2+1)$-dimensional Boiti-Leon-Manna-Pempinelli equation, Fractals, 2025. https://doi.org/10.1142/S0218348X25500823 doi: 10.1142/S0218348X25500823
    [42] S. E. Lyshevski, Engineering and scientific computations using MATLAB, John Wiley & Sons, 2003. https://doi.org/10.1002/047172386X
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(581) PDF downloads(31) Cited by(0)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog