Theory article Topical Sections

The Laplacian spectra of the RG-join weighted graphs and related asymptotic network indices

  • Received: 01 May 2025 Revised: 24 July 2025 Accepted: 01 August 2025 Published: 12 August 2025
  • MSC : 15A18, 93A16, 93B60

  • In this article, the Laplacian spectra of the RG-join weighted graphs and the related network indices named network coherence, kirchhoff index, and Laplacian-energy-like invariant are studied via algebraic graph theory and analysis approach. First, the Laplacian spectrum of the weighted RG-join graph is derived, then the union of graphs together with the RG-join operation are applied to form the weighted RG-join graphs with several classic substructures, and the mathematical characterizations for the indices are derived by the L-spectra. In addition, the related asymptotic results are also derived. It is found that, based on the RG-join weighted structure, when the cardinalities of all copy sets inner $ G_2 $ are large enough, the network coherence and the Kirchhoff index will be irrelevant with the quantity of copies in $ G_2 $, and also irrelevant with the edge weight $ d_1 $ in the other subgraph $ G_1 $.

    Citation: Da Huang, Xing Chen, Cheng Yan, Zhiyong Yu. The Laplacian spectra of the RG-join weighted graphs and related asymptotic network indices[J]. AIMS Mathematics, 2025, 10(8): 18183-18194. doi: 10.3934/math.2025810

    Related Papers:

  • In this article, the Laplacian spectra of the RG-join weighted graphs and the related network indices named network coherence, kirchhoff index, and Laplacian-energy-like invariant are studied via algebraic graph theory and analysis approach. First, the Laplacian spectrum of the weighted RG-join graph is derived, then the union of graphs together with the RG-join operation are applied to form the weighted RG-join graphs with several classic substructures, and the mathematical characterizations for the indices are derived by the L-spectra. In addition, the related asymptotic results are also derived. It is found that, based on the RG-join weighted structure, when the cardinalities of all copy sets inner $ G_2 $ are large enough, the network coherence and the Kirchhoff index will be irrelevant with the quantity of copies in $ G_2 $, and also irrelevant with the edge weight $ d_1 $ in the other subgraph $ G_1 $.



    加载中


    [1] R. Olfati-Saber, R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Automat. Contr., 49 (2004), 1520–1533. http://doi.org/10.1109/TAC.2004.834113 doi: 10.1109/TAC.2004.834113
    [2] W. Yu, G. Chen, M. Cao, J. Kurths, Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics, IEEE Trans. Syst. Man Cybern. B, 40 (2010), 881–891. http://doi.org/10.1109/TSMCB.2009.2031624 doi: 10.1109/TSMCB.2009.2031624
    [3] G. Wen, Z. Duan, W. Yu, G. Chen, Consensus of second-order multi-agent systems with delayed nonlinear dynamics and intermittent communications, Int. J. Control, 86 (2013), 322–331. http://doi.org/10.1080/00207179.2012.727473 doi: 10.1080/00207179.2012.727473
    [4] J. Wu, H. Qin, Y. Hong, Synchronization of netowrked systems and Laplacian-spectrum modification, In: Proceedings of the 26th Chinese control conference, Zhangjiajie, China, July 26–31 2007,573–576. http://doi.org/10.1109/CHICC.2006.4347116
    [5] G. F. Young, L. Scardovi, N. E. Leonard, Robustness of noisy consensus dynamics with directed communication, In: Proceedings of the 2010 American control conference, Baltimore, MD, USA, 30 June–2 July 2010, 6312–6317. http://doi.org/10.1109/ACC.2010.5531506
    [6] B. Bamieh, M. R. Jovanovi, P. Mitra, S. Patterson, Coherence in large-scale networks: dimension-dependent limitations of local feedback, IEEE Trans. Automat. Contr., 57 (2012), 2235–2249. http://doi.org/10.1109/TAC.2012.2202052 doi: 10.1109/TAC.2012.2202052
    [7] S. Patterson, B. Bamieh, Consensus and coherence in fractal networks, IEEE Trans. Control Netw. Syst., 1 (2014), 338–348. http://doi.org/10.1109/TCNS.2014.2357552 doi: 10.1109/TCNS.2014.2357552
    [8] S. Patterson, Y. Yi, Z. Zhang, A resistance-distance-based approach for optimal leader selection in noisy consensus networks, IEEE Trans. Control Netw. Syst., 6 (2019), 191–201. http://doi.org/10.1109/TCNS.2018.2805639 doi: 10.1109/TCNS.2018.2805639
    [9] Y. Yi, Z. Zhang, L. Shan, G. Chen, Robustness of first-and second-order consensus algorithms for a noisy scale-free small-world Koch network, IEEE Trans. Control Syst. Tech., 25 (2017), 342–350. http://doi.org/10.1109/TCST.2016.2550582 doi: 10.1109/TCST.2016.2550582
    [10] W. Sun, M. Hong, S. Liu, K. Fan, Leader-follower coherence in noisy ring-trees networks, Nonlinear Dyn., 102 (2020), 1657–1665. http://doi.org/10.1007/s11071-020-06011-9 doi: 10.1007/s11071-020-06011-9
    [11] J.-B. Liu, Y. Bao, W. Zheng, S. Hayat, Network coherence analysis on a family of nested weighted n-polygon networks, Fractals, 29 (2021), 2150260. http://doi.org/10.1142/S0218348X21502601 doi: 10.1142/S0218348X21502601
    [12] J.-B. Liu, X. Wang, J. Cao, The coherence and properties analysis of balanced $2^p$-Ary tree networks, IEEE Trans. Netw. Sci. Eng., 11 (2024), 4719–4728. http://doi.org/10.1109/TNSE.2024.3395710 doi: 10.1109/TNSE.2024.3395710
    [13] Y. Wan, K. Namuduri, S. Akula, M. Varanasi, The impact of multi-group multi-layer network structure on the performance of distributed consensus building strategies, Int. J. Robust Nonlinear Control, 23 (2013), 653–662. http://doi.org/10.1002/rnc.2783 doi: 10.1002/rnc.2783
    [14] J. Zhu, D. Huang, H. Gao, X. Li, The Laplacian spectrum of weighted composite networks and the applications, AIP Adv., 14 (2024), 035229. http://doi.org/10.1063/5.0194325 doi: 10.1063/5.0194325
    [15] M.-M. Xu, J.-A. Lu, J. Zhou, Synchronizability and eigenvalues of two-layer star networks, Acta Phys. Sin., 65 (2016), 028902. http://doi.org/10.7498/aps.65.028902 doi: 10.7498/aps.65.028902
    [16] C. Hu, H. He, H. Jiang, Edge-based adaptive distributed method for synchronization of intermittently coupled spatiotemporal networks, IEEE Trans. Automat. Contr., 67 (2022), 2597–2604. http://doi.org/10.1109/TAC.2021.3088805 doi: 10.1109/TAC.2021.3088805
    [17] Y. Yang, D. J. Klein, Comparison theorems on the resistance distances and Kirchhoff indices of S, T-isomers, Discrete Appl. Math., 175 (2014), 87–93. http://doi.org/10.1016/j.dam.2014.05.014 doi: 10.1016/j.dam.2014.05.014
    [18] Y. Yang, Y. Yu, Resistance distances and Kirchhoff indices under graph operations, IEEE Access, 8 (2020), 95650–95656. http://doi.org/10.1109/ACCESS.2020.2995935 doi: 10.1109/ACCESS.2020.2995935
    [19] W. Wang, D. Yang, Y. Luo, The Laplacian polynomial and Kirchhoff index of graphs derived from regular graphs, Discrete Appl. Math., 161 (2013), 3063–3071. http://doi.org/10.1016/j.dam.2013.06.010 doi: 10.1016/j.dam.2013.06.010
    [20] I. Gutman, B. Zhou, B. Furtila, The Laplacian-energy-like invariant is an energy like invariant, MATCH Commun. Math. Comput. Chem., 64 (2010), 85–96.
    [21] J.-B. Liu, X.-F. Pan, F.-T. Hu, F.-F. Hu, Asymptotic Laplacian-energy-like invariant of lattice, Appl. Math. Comput., 253 (2015), 205–214. http://doi.org/10.1016/j.amc.2014.12.035 doi: 10.1016/j.amc.2014.12.035
    [22] J.-B. Liu, X.-F. Pan, Asymptotic incidence energy of lattice, Physica A, 422 (2015), 193–202. https://doi.org/10.1016/j.physa.2014.12.006 doi: 10.1016/j.physa.2014.12.006
    [23] R. P. Varghese, K. R. Kumar, Spectra of a new join of two graphs, Advances in the Theoretical and Applied Mathematics, 11 (2016), 459–470.
    [24] H. Zhang, Y. Yang, C. Li, Kirchhoff index of composite graphs, Discrete Appl. Math., 157 (2009), 2918–2927. http://doi.org/10.1016/j.dam.2009.03.007 doi: 10.1016/j.dam.2009.03.007
    [25] C. McLeman, E. McNicholas, Spectra of coronae, Linear Algebra Appl., 435 (2011), 998–1007. http://doi.org/10.1016/j.laa.2011.02.007 doi: 10.1016/j.laa.2011.02.007
    [26] S.-Y. Cui, G.-T. Tian, The spectrum and the signless Laplacian spectrum of coronae, Linear Algebra Appl., 437 (2012), 1692–1703. http://doi.org/10.1016/j.laa.2012.05.019 doi: 10.1016/j.laa.2012.05.019
    [27] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, The hyper-Wiener index of graph operations, Comput. Math. Appl., 56 (2008), 1402–1407. http://doi.org/10.1016/j.camwa.2008.03.003 doi: 10.1016/j.camwa.2008.03.003
    [28] R. Hammack, W. Imrich, S. Klavzar, Handbook of product graphs, 2 Eds., New York: CRC Press, 2000. https://doi.org/10.1201/b10959
    [29] X. Liu, Z. Zhang, Spectra of subdivision-vertex and subdivision-edge joins of graphs, Bull. Malays. Math. Sci. Soc., 42 (2019), 15–31. http://doi.org/10.1007/s40840-017-0466-z doi: 10.1007/s40840-017-0466-z
    [30] D. J. Klein, M. Randić, Resistance distance, J. Math. Chem., 12 (1993), 81–95. http://doi.org/10.1007/BF01164627 doi: 10.1007/BF01164627
    [31] J.-B. Liu, X.-F. Pan, A unified approach to the asymptotic topological indices of various lattices, Appl. Math. Comput., 270 (2015), 62–73. http://doi.org/10.1016/j.amc.2015.08.008 doi: 10.1016/j.amc.2015.08.008
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(474) PDF downloads(24) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog