The paper examines the input-to-state stability (ISS) in nonlinear impulsive systems under Event-triggered impulsive control (ETIC), which is a method that differs from traditional approaches by activating the controller only when state-dependent event conditions are met and maintains no control action between consecutive impulse instants. The event-triggered mechanism (ETM) generates state-dependent impulses, and time delays in impulses are comprehensively accounted for. The derived sufficient conditions guarantee the exclusion of Zeno behavior and the assurance of the ISS, while considering external inputs in both continuous and impulsive dynamics. A new event-triggered delayed impulsive control (ETDIC) strategy is presented to reveal the relationship among relevant parameters, namely that time delays in impulses may actually promote stabilization in terms of the ISS. Lyapunov-based criteria are established to prevent fast triggering. These results are applied to nonlinear systems to obtain the ETM and control gains via linear matrix inequalities (LMIs). Two numerical examples validate the proposed theory and strategies.
Citation: Biwen Li, Yu Gu. Event-triggered impulsive control with time delays for input-to-state stabilization of nonlinear systems[J]. AIMS Mathematics, 2025, 10(8): 17982-17997. doi: 10.3934/math.2025801
The paper examines the input-to-state stability (ISS) in nonlinear impulsive systems under Event-triggered impulsive control (ETIC), which is a method that differs from traditional approaches by activating the controller only when state-dependent event conditions are met and maintains no control action between consecutive impulse instants. The event-triggered mechanism (ETM) generates state-dependent impulses, and time delays in impulses are comprehensively accounted for. The derived sufficient conditions guarantee the exclusion of Zeno behavior and the assurance of the ISS, while considering external inputs in both continuous and impulsive dynamics. A new event-triggered delayed impulsive control (ETDIC) strategy is presented to reveal the relationship among relevant parameters, namely that time delays in impulses may actually promote stabilization in terms of the ISS. Lyapunov-based criteria are established to prevent fast triggering. These results are applied to nonlinear systems to obtain the ETM and control gains via linear matrix inequalities (LMIs). Two numerical examples validate the proposed theory and strategies.
| [1] | V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, Singapore: World Scientific, 1989. https://doi.org/10.1142/0906 |
| [2] | T. Yang, Impulsive systems and control: theory and applications, Nova Science Publishers, 2001. |
| [3] |
X. D. Li, X. Y. Yang, T. W. Huang, Persistence of delayed cooperative models: impulsive control method, Appl. Math. Comput., 342 (2019), 130–142. https://doi.org/10.1016/j.amc.2018.09.003 doi: 10.1016/j.amc.2018.09.003
|
| [4] |
X. Z. Liu, K. X. Zhang, W. C. Xie, Pinning impulsive synchronization of reaction-diffusion neural networks with time-varying delays, IEEE Trans. Neural Netw. Learn. Syst., 28 (2017), 1055–1067. https://doi.org/10.1109/TNNLS.2016.2518479 doi: 10.1109/TNNLS.2016.2518479
|
| [5] |
E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE Trans. Autom. Control, 34 (1989), 435–443. https://doi.org/10.1109/9.28018 doi: 10.1109/9.28018
|
| [6] |
E. D. Sontag, Comments on integral variants of ISS, Syst. Control Lett., 34 (1998), 93–100. https://doi.org/10.1016/S0167-6911(98)00003-6 doi: 10.1016/S0167-6911(98)00003-6
|
| [7] |
Z. P. Jiang, Y. Wang, Input-to-state stability for discrete-time nonlinear systems, Automatica, 37 (2001), 857–869. https://doi.org/10.1016/S0005-1098(01)00028-0 doi: 10.1016/S0005-1098(01)00028-0
|
| [8] |
A. R. Teel, Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem, IEEE Trans. Autom. Control, 43 (1998), 960–964. https://doi.org/10.1109/9.701099 doi: 10.1109/9.701099
|
| [9] |
D. Nešić, A. R. Teel, Input-to-state stability of networked control systems, Automatica, 40 (2004), 2121–2128. https://doi.org/10.1016/j.automatica.2004.07.003 doi: 10.1016/j.automatica.2004.07.003
|
| [10] |
Y. E. Wang, X. M. Sun, P. Shi, J. Zhao, Input-to-state stability of switched nonlinear systems with time delays under asynchronous switching, IEEE Trans. Cybernet., 43 (2013), 2261–2265. https://doi.org/10.1109/TCYB.2013.2240679 doi: 10.1109/TCYB.2013.2240679
|
| [11] |
X. Y. Yang, X. D. Li, Q. Xi, P. Y. Duan, Review of stability and stabilization for impulsive delayed systems, Math. Biosci. Eng., 15 (2018), 1495–1515. https://doi.org/10.3934/mbe.2018069 doi: 10.3934/mbe.2018069
|
| [12] |
J. P. Hespanha, D. Liberzon, A. R. Teel, Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 44 (2008), 2735–2744. https://doi.org/10.1016/j.automatica.2008.03.021 doi: 10.1016/j.automatica.2008.03.021
|
| [13] |
S. Dashkovskiy, P. Feketa, Input-to-state stability of impulsive systems and their networks, Nonlinear Anal. Hybrid Syst., 26 (2017), 190–200. https://doi.org/10.1016/j.nahs.2017.06.004 doi: 10.1016/j.nahs.2017.06.004
|
| [14] |
R. Goebel, R. G. Sanfelice, A. R. Teel, Hybrid dynamical systems: robust stability and control for systems that combine continuous-time and discrete-time dynamics, IEEE Control Syst. Mag., 29 (2009), 28–93. https://doi.org/10.1109/MCS.2008.931718 doi: 10.1109/MCS.2008.931718
|
| [15] |
D. P. Borgers, W. P. M. H. Heemels, Event-separation properties of event-triggered control systems, IEEE Trans. Autom. Control, 59 (2014), 2644–2656. https://doi.org/10.1109/TAC.2014.2325272 doi: 10.1109/TAC.2014.2325272
|
| [16] |
X. G. Tan, J. D. Cao, X. D. Li, Consensus of leader-following multiagent systems: a distributed event-triggered impulsive control strategy, IEEE Trans. Cybern., 49 (2019), 792–801. https://doi.org/10.1109/TCYB.2017.2786474 doi: 10.1109/TCYB.2017.2786474
|
| [17] |
X. D. Li, D. X. Peng, J. D. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Autom. Control, 65 (2020), 4908–4913. https://doi.org/10.1109/TAC.2020.2964558 doi: 10.1109/TAC.2020.2964558
|
| [18] |
J. J. Chen, B. S. Chen, Z. G. Zeng, Synchronization in multiple neural networks with delay and disconnected switching topology via event-triggered impulsive control strategy, IEEE Trans. Ind. Electron., 68 (2021), 2491–2500. https://doi.org/10.1109/TIE.2020.2975498 doi: 10.1109/TIE.2020.2975498
|
| [19] |
X. R. Xing, J. E. Zhang, Input-to-state stabilization of a class of uncertain nonlinear systems via observer-based event-triggered impulsive control, Complexity, 2020 (2020), 3951381. https://doi.org/10.1155/2020/3951381 doi: 10.1155/2020/3951381
|
| [20] |
X. D. Li, T. X. Zhang, J. H. Wu, Input-to-state stability of impulsive systems via event-triggered impulsive control, IEEE Trans. Cybern., 52 (2022), 7187–7195. https://doi.org/10.1109/TCYB.2020.3044003 doi: 10.1109/TCYB.2020.3044003
|
| [21] |
X. D. Li, P. Li, Input-to-state stability of nonlinear systems: event-triggered impulsive control, IEEE Trans. Autom. Control, 67 (2022), 1460–1465. https://doi.org/10.1109/TAC.2021.3063227 doi: 10.1109/TAC.2021.3063227
|
| [22] |
B. Liu, D. J. Hill, Z. J. Sun, Stabilisation to input-to-state stability for continuous-time dynamical systems via event-triggered impulsive control with three levels of events, IET Control Theory Appl., 12 (2018), 1167–1179. https://doi.org/10.1049/iet-cta.2017.0820 doi: 10.1049/iet-cta.2017.0820
|
| [23] | S. P. Ma, Z. L. Cheng, Delay-dependent robust stabilization for uncertain discrete-time singular systems with time-delays, In: 2006 6th World Congress on Intelligent Control and Automation, 2006, 2081–2085. https://doi.org/10.1109/WCICA.2006.1712725 |
| [24] |
S. X. Luo, F. Q. Deng, W. H. Chen, Stability and stabilization of linear impulsive systems with large impulse-delays: a stabilizing delay perspective, Automatica, 127 (2021), 109533. https://doi.org/10.1016/j.automatica.2021.109533 doi: 10.1016/j.automatica.2021.109533
|
| [25] |
X. D. Li, P. Li, Stability of time-delay systems with impulsive control involving stabilizing delays, Automatica, 124 (2021), 109336. https://doi.org/10.1016/j.automatica.2020.109336 doi: 10.1016/j.automatica.2020.109336
|
| [26] |
M. Z. Wang, P. Li, X. D. Li, Event-triggered delayed impulsive control for input-to-state stability of nonlinear impulsive systems, Nonlinear Anal. Hybrid Syst., 47 (2023), 101277. https://doi.org/10.1016/j.nahs.2022.101277 doi: 10.1016/j.nahs.2022.101277
|
| [27] |
Z. Wang, Y. Y. Ni, Y. J. Fan, J. W. Xia, An interval-appointed looped-functional approach for switching event-triggered systems with input saturation and its application to memory-based event-triggered control, IEEE Trans. Control Netw. Syst., 12 (2025), 1478–1487. https://doi.org/10.1109/TCNS.2025.3526339 doi: 10.1109/TCNS.2025.3526339
|
| [28] |
X. Huang, W. J. Li, Z. Wang, J. W. Xia, H. Shen, Exponential stabilization of delayed switched systems: a discrete dynamic event-triggered scheme, IEEE Trans. Syst. Man Cybernet. Syst., 53 (2023), 7391–7402. https://doi.org/10.1109/TSMC.2023.3298377 doi: 10.1109/TSMC.2023.3298377
|
| [29] |
X. F. Wang, M. Lemmon, On event design in event-triggered feedback systems, Automatica, 47 (2011), 2319–2322. https://doi.org/10.1016/j.automatica.2011.05.027 doi: 10.1016/j.automatica.2011.05.027
|
| [30] | M. Abdelrahim, R. Postoyan, J. Daafouz, D. Nešić, Input-to-state stabilization of nonlinear systems using event-triggered output feedback controllers, In: 2015 European Control Conference (ECC), 2015, 2180–2185. https://doi.org/10.1109/ECC.2015.7330863 |