In this paper, we provide a complete characterization of bounded Toeplitz operators $ T_f $ on the harmonic Bergman space of the unit disk, where the symbol $ f $ has a polar decomposition truncated above, that commute with $ T_{z+\bar{g}} $ for a bounded analytic function $ g $.
Citation: Hasan Iqtaish, Issam Louhichi, Abdelrahman Yousef. On the commuting problem of Toeplitz operators on the harmonic Bergman space[J]. AIMS Mathematics, 2025, 10(7): 17232-17247. doi: 10.3934/math.2025770
In this paper, we provide a complete characterization of bounded Toeplitz operators $ T_f $ on the harmonic Bergman space of the unit disk, where the symbol $ f $ has a polar decomposition truncated above, that commute with $ T_{z+\bar{g}} $ for a bounded analytic function $ g $.
| [1] |
B. Choe, Y. Lee, Commuting Toeplitz operators on the harmonic Bergman space, Mich. Math. J., 46 (1999), 163–174. https://doi.org/10.1307/mmj/1030132367 doi: 10.1307/mmj/1030132367
|
| [2] |
B. Choe, Y. Lee, Commutants of analytic Toeplitz operators on the harmonic Bergman space, Integr. Equ. Oper. Theory, 50 (2004), 559–564. https://doi.org/10.1007/s00020-004-1338-0 doi: 10.1007/s00020-004-1338-0
|
| [3] |
X. Ding, A question of Toeplitz operators on the harmonic Bergman space, J. Math. Anal. Appl., 344 (2008), 367–372. https://doi.org/10.1016/j.jmaa.2008.02.063 doi: 10.1016/j.jmaa.2008.02.063
|
| [4] |
X. Dong, Z. Zhou, Products of Toeplitz operators on the harmonic Bergman space, Proc. Amer. Math. Soc., 138 (2010), 1765–1773. https://doi.org/10.1090/S0002-9939-09-10204-6 doi: 10.1090/S0002-9939-09-10204-6
|
| [5] |
X. Dong, Z. Zhou, Commuting quasihomogeneous Toeplitz operators on the harmonic Bergman space, Complex Anal. Oper. Theory, 7 (2013), 1267–1285. https://doi.org/10.1007/s11785-012-0223-0 doi: 10.1007/s11785-012-0223-0
|
| [6] |
I. Louhichi, L. Zakariasy, Quasihomogeneous Toeplitz operators on the harmonic Bergman space, Arch. Math., 98 (2012), 49–60. https://doi.org/10.1007/s00013-011-0346-y doi: 10.1007/s00013-011-0346-y
|
| [7] |
I. Louhichi, N. Rao, A. Yousef, Two questions on products of Toeplitz operators on the Bergman space, Complex Anal. Oper. Theory, 3 (2009), 881. https://doi.org/10.1007/s11785-008-0097-3 doi: 10.1007/s11785-008-0097-3
|
| [8] | R. Remmert, Classical topics in complex function theory, New York: Springer, 1998. https://doi.org/10.1007/978-1-4757-2956-6 |
| [9] | T. Le, A. Tikaradze, Commutants of Toeplitz operators with harmonic symbols, New York J. Math., 23 (2017), 1723–1731. |