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1. Introduction

Let dA = rdr [fr—g, where (r,6) are the polar coordinates, denote the normalized Lebesgue area
measure on the unit disk D so that D has the measure 1. The space L*(D, dA) consists of all Lebesgue
square-integrable functions on D and forms a Hilbert space with the inner product

m9=Lﬂ&6mw.

The harmonic Bergman space, denoted L7(ID), is the closed subspace of L*(D, dA) comprising all
complex-valued L>-harmonic functions on D. Let Q represent the orthogonal projection from L*(D, dA)
onto Lfl(D). This projection is given by the integral operator

1 1
WwiUU%W+WWW4wMMM’ED

for any f € L*(D, dA). It is well known that Q is bounded from L*(D, dA) onto L;(D).
For a function u € L'(D, dA), we define the Toeplitz operator T, with the symbol u on L; by

T.f = 0(uf), (1.1)
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for f € Lﬁ(D), provided that the product uf is in L*(D, dA). This operator is densely defined on the
polynomials and is not bounded in general. However, if u is bounded on D, then 7, is bounded and
1Tl < llulleo.

A symbol u is called quasihomogeneous of degree p, where p is an integer, if it can be expressed in
the form u(re) = e'?%¢(r), where ¢ is a radial function. In this case, the associated Toeplitz operator T,
is called a quasihomogeneous Toeplitz operator of degree p. The study of these operators is motivated
by the structural decomposition of L*(D, dA), which can be written as L*(D, dA) = 6B, _, ¢*’R, where
R denotes the space of square-integrable radial functions on [0, 1) with respect to the measure rdr. This
decomposition implies that any function f € L*(D, dA) admits a polar decomposition f(z) = f(re’®) =
ez € fi(r), where each fi(r) is a radial function. Moreover, we say that f is truncated above if its
polar decomposition is of the form f(re”) = Y e*fi(r), for some integer N.

Our focus is on identifying the conditions that characterize the symbols of commuting Toeplitz
operators on L}(D). This problem has been extensively explored in the contexts of the classical
Hardy space and the analytic Bergman space over the years. The study of Toeplitz operators on
L;(D) exhibits significant differences compared with their counterparts on the analytic Bergman space
and remains less understood. However, there has been growing interest in investigating this issue
within the framework of the harmonic Bergman space. For instance, Choe and Lee [1] established
that two analytic Toeplitz operators on L,21 (i.e., Toeplitz operators with analytic symbols) commute
if and only if their symbols, along with the constant function 1, are linearly dependent. Subsequent
works such as [2,3] demonstrated that an analytic Toeplitz operator and a co-analytic Toeplitz operator
on Li(D) can commute only if at least one of their symbols is a constant function. In [4], the
conditions under which the product of two quasihomogeneous Toeplitz operators remains a Toeplitz
operator were investigated. Building upon this, the work in [5] delved into the commuting problem
for quasihomogeneous Toeplitz operators on L%(ID)), where the authors characterized the commuting
Toeplitz operators with quasihomogeneous symbols. In addition, they showed that a Toeplitz operator
with an analytic or co-analytic monomial symbol commutes with another Toeplitz operator only in
the trivial case. For further results on commuting Toeplitz operators in harmonic Bergman spaces, the
reader may consult [1,2, 6] and the references therein.

The primary goal of our study is to characterize a special class of commuting Toeplitz operators
acting on LE(D). More specifically, we characterize all Toeplitz operators with truncated-above
symbols that commute with the Toeplitz operator 7,, whose symbol is the harmonic function u(z) =
7+ g(z), where g(z) = Yo anZ" is a bounded analytic function on D.

One of the main challenges in this problem arises from the interplay between the multiplication
operators induced by the symbols and the projection onto the harmonic Bergman space. Unlike
the analytic Bergman space, where the Bergman projection has an explicit integral representation,
the harmonic Bergman projection introduces additional complexities that make computing Toeplitz
operator products more difficult. Consequently, many classical results from the analytic setting do not
directly extend to the harmonic case, necessitating the development of new techniques and approaches.
To emphasize the difference between analytic and harmonic Bergman spaces, the authors in [7] proved,
that in the analytic Bergman space, if 7, (with f having a polar decomposition truncated above)
commutes with 7',, then Ty must be a polynomial in 77, ; of degree at most 3; similarly, if 7y commutes
with T, then T is necessarily a polynomial in 7T7; of degree at most 2. However, as we will show
in our main theorem, this property does not hold in the harmonic Bergman space.
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To structure our analysis effectively, this paper is organized as follows: Section 2 presents the key
preliminary results that are essential for proving the main theorem. Section 3 formally states the main
result. Finally, Section 4 is devoted to its proof, which is divided into several lemmas to enhance clarity
and systematically manage the technical details.

2. Tools

The Mellin transform aof a radial function ¢ € L'([0, 1), rdr) is given by

1
#z) = f ¢ dr.
0

It is well known that for such functions, the Mellin transform is bounded in the right half-plane {z €
C: Rz > 2} and is analytic in {z € C : Rz > 2}.

The following lemma describes the action of quasihomogeneous Toeplitz operators on elements of
the orthogonal basis of Li(]D). See [4, Lemma 2.1].

Lemma 2.1. Let k € Z and let ¢ be a radial in L'([0, 1), rdr). Then, for each n € N, the Toeplitz
operator Ty satisfies

2(n+k+ DoQn + k +2)7*,  ifn > —k,

Leang(z') = {2(—11 —k+ D@(—k + 27", ifn < —k.

Similarly,
2n—k+ DpQ2n —k+2)7*%, ifn >k,

T s, (7") = —
() {Z(k — 1+ gtk + 27", ifn <k.

A fundamental result states that the Mellin transform of a function is uniquely determined by its
values on an arithmetic sequence of integers. This is formalized in the following classical theorem [8,
p. 102].

Theorem 2.1. Let f be a bounded analytic function in the right half-plane {z € C : Rz > 0} that
vanishes at an infinite sequence of distinct points dy, d, . . . satisfying the following:

(i) inf{|d,|} > 0, and
(ii) 21 R (4) = .
Then f must be identically zero on {z € C : Rz > O}.

Another important result we frequently use is the following classical lemma (see [9, Lemma 7]):

Lemma 2.2. A bounded, periodic, meromorphic function defined on a right half-plane must be
constant.

The following lemma is crucial for the proof of the main result and can be deduced from [5,
Theorem 3.8]:
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Lemma 2.3. Let f(re') = eP¢(r) be a quasihomogenous symbol, where p € Z, and ¢(r) €
LY([0,1),rdr). If TfTs = TpTy for n > 1 integer, then ¢(r) = Crf. In other words, f must be
analytic of the form f(z) = Cz.

Remark 2.1. The following observations will be useful in our proofs.

1) A straightforward calculation shows that
—~ 1
r(z) = ——, fornel,
Z+n

and 1!
a b - "
r*In(r)b(z) = @+
where a > 0 and b is a non-negative integer.

2) Regarding Theorem 2.1, we apply it in the following setting. Suppose (ny); is an arithmetic
sequence of positive integers and that, for some radial function ¢, we have a(nk) = 0 forall k. By
Theorem 2.1, this forces ato be identically zero in the right half-plane, implying that ¢ itself must
vanish there as well.

3) Lemma 2.2 is a key tool in our arguments. In our proofs, we encounter functional equations of
the form

F(z+p) = F(z) = Gz + p) - G(2),

where R(z) > 0, p is an integer, and F and G are bounded analytic functions in the right half-
plane. Applying Lemma 2.2, we conclude that F(z) = C + G(z) for some constant C.

3. Main result

Given a symbol u(z) = z+ @, where g(z) = X, a,z" is a bounded analytic function on D, we aim
to characterize all symbols of the form (i.e., symbols whose polar decomposition is truncated above)

N

flre®y= > LN =1,

n=—oo

in L'(D, dA) for which the associated Toeplitz operators Ty are bounded and commute with 7',. It is
understood here that fy # 0. We recall that 7y commutes with T, if and only if

/T2 = T,T/(2), (3.1)
and
T/TuZ) = T.T/@), (3.2)

for all vectors z* and Z* in the orthogonal basis of L;(DD).
Our main theorem can be stated as follows.

Theorem 3.1. Let u(z) = z+ Y10, @z If a nonzero function f of the form f(re®) = ZQ;_OO e™ fi(r), with
N > 1, such that Ty commutes with T,, then Ty is a polynomial of degree at most one in T,. In other
words, the constants Cy, Cy exist such that Ty = C,T, + Col, where I denotes the identity operator.

AIMS Mathematics Volume 10, Issue 7, 17232-17247.
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4. Key lemmas for the proof of the main theorem

The proof of our main result is quite lengthy and involves intricate computations. To enhance clarity
and readability, we have structured the proof into several lemmas. The first lemma establishes that the
highest degree N of f in Theorem 3.1 cannot exceed 3. However, we will later demonstrate that N
must, in fact, be equal to 1.

Lemma 4.1. Under the hypothesis of Theorem 3.1, we have N < 3.

Proof. The term in z of degree n+ N +1 in Eq (3.1) appears on both sides, originating from 7oz, T.(2")
and T, T e, (z"). Therefore, we have

T ,ine fy T.(Z") =T,T,ne fy (@,

for every n. By Lemma 2.3, this implies that eV fy = Cyz" for some constant Cy. Similarly, the term
in z of degree n + N appears on both sides only from Tiwv-nep, T.(z") and T.Tiv-165, (z"). Applying
Lemma 2.3 again, we conclude that e/™~f,_, is analytic and satisfies eV~ fy_; = Cy_;ZV"! for
some constant Cy_;.

Next, we turn our attention to the radial function fy_,. The term in z of degree n + N — 1 comes
from

(TCNZNTa'l z+ Tei(N—Z)S o Tz) (Zn) = (Ta—1 ZTCNzN + TZTei(N—Z)G fN—2) (Zﬂ).

Using Lemma 2.1, the previous equation implies

2n

2n+2

— 2n+ 2N —
+ 2n+2N)fy2(2n+ N +2) = Cya, n > + (2n+2N - 2)fy2(2n + N),

C T -
N 2n+ 2N +

which is equivalent to

— — 2n+ 2N 2n
2 (2 2)-2 — D fvor(2 = j— = T )
(n+N)fy-22n+N+2)=2(n+N—-1)fy>(2n + N) CNa12n+2N+2 CNa12n+2

We complexify the equation above by letting z = 2n and we use point (2) of Remark 2.1 to obtain

— — 7+ 2N Z
2N) fy- 2) — 2N —2) fn- = — — n—. 4.1
(Z+2N)fy2(z+ N+2)—(z+ )fn—2(z+ N) CNalz+2N+2 CNa1Z+2 4.1)
i 74+ 2i

Define F(z) = (z + 2N — Z)EV_Q(Z + N) and G(z) = Cya; Z . Then Eq (4.1) becomes

1

Z2+2i+2
F(z+2)-F(z) =Gz +2)-G(2).

Thus, point (3) of Remark 2.1 implies the existence of a constant Cy_; such that F(z) — G(z) = Cy_».

Equivalently
N-1

(2+2N = 2)fya(z+N) = Cya + Cxétr )|

i=0

7+ 2

. 4.2
z7+2i+2 (4.2)
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Using partial fraction decomposition and observing that ﬁv_g(Z +N) = rN/fN\_z(z), we obtain

s = —v v S e
VST TN 2T MM LGN -+ 2i 1 2)
Cva oo | 1 +N‘2 Z+2i
= a _—
c+2N -2 " Z42N T L@+ 2N -2)(z+2i+2)
Cva o[ 1 z+2N-4 +N‘3 Z+2i
= a
c+2N -2 "z42N T @+2N-22 L (z+2N -2)(z+2i+2)
_ O 0L 2
z+2N-2" MU Z+2N  z+2N-2 (z+2N-2)
N-3

+ 2-2N+2i ~ )
; (4-2N+2D)(z+2N—-2) (N-=2i-4(z+2i+2)]|

Using point (1) of Remark 2.1, it follows that
”N/fN\—z(Z) = CN—ZVm(Z) + Cyay [ﬁv(z) + im(z) +2r28-11n r(2)
2 —-2N +2i ——, 2 =
+ _ @ 2N 2 T 2142 .
;(4—21\/ TS TV Ty (Z))]
Therefore

fva(r) = Cyor™ % + Cyay

2 2N +2i 2 |
VN+N N2l + N2 2i+2—-N .
’ nr Z 4-oN+2i 2N-2i—4"

Observe that fy_, belongs L'([0, 1), rdr) if and only if 2i+2— N +1 > 0, which simplifies to N < 2i+3
foralli =0,1,2,..., N-3. Consequently, this condition must hold fori = 0, whichleadsto N < 3. O

Note. With respect to the notation used in the previous proof, we would like to remind the reader
and draw their attention to the fact that the functions f;(r) represent the radial component in the polar
decomposition

N
fre®y = > e fir).
k=—00

The constants C; appear naturally in the process of determining each corresponding radial function f;.
The subscript k in Cy is intentionally chosen to indicate the association between the constant and the
corresponding radial term f;. This notation is consistently used throughout the paper to maintain the
clarity and traceability of the decomposition components.

Remark 4.1. Lemma 4.1 implies the following:

(1) fi(r) = Csr°.
(2) folr) = Cor*.
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(3) To find fi(r), we plug N = 3 in Eq (4.2) to obtain

2

- Cl z+ 2
3 — C:a
rh@ = g+ Ga L+ )z +2i+2)
C, i z N 7+ 2 N 7+ 4
= a
z+4 31(z+4)(z+2) (z+4)2 (z+6)(z+4)
T I S B
= a
4 M ze2 T 244 (7442 z+6

= C1@) + G [15(2) + 3r(2) + 2 Inr(2) - 1(2)].

Hence, point (2) of Remark 2.1 yields

filr) =Cir+ Csay

1
r3+3r+2rlnr——].
r

So far, using Lemma 4.1 and Remark 4.1, we have established that any Toeplitz operator with the
N o

symbol f(re?) = Z ™ fi(r) that commutes with Tz, where g(z) = Z a;z' is a bounded analytic

k=—o0 =1
function on D, must take the form

1 S
- )+ D e,

f(re’H) =Gy + C? + €Y (Clr +Cia [P +3r+2rlnr— -
k=—c0

In the following lemmas, we compute the exact expressions of fy(r), f-1(r), and f_,(r).

Lemma 4.2. Under the hypothesis of Theorem 3.1, we have
for) = Co+ Caay [1+2In7 + 72|+ Csp [41n7 + 27 + 1.
Proof. Forn > 1, the term 2! in T/ T,.5(z") = T,.zT#(2") appears both sides only from the expressions
(T4 T+ T Tz + T, To) (2,

and
(TZTfO + TazTong, + Tae Ty, ) (2.

Thus, applying Lemma 2.1, we obtain

— _ 2n _2n-2 — _2n+4 _2n+4
(2n+4)fo(2n+4)+C2a12n+2+C3a22n+2—(2n+2)f0(2n+2)+C2a12n+6+C3a22n+8,
which can be written as
— — 2n+4 2n 2n+4 2n-2
2n+dHH2n+4)—2n+2)2n +2) = Cra - a - .
@n+Dfo2n +4) = Cn+2)fo2n +2) = G| 5 —— 2n+2]+ e E T R )

We complexify the equation above by considering z = 2n — 2 and we use point (2) of Remark 2.1 to
obtain

AIMS Mathematics Volume 10, Issue 7, 17232-17247.
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z+6 Z

z+10 z+4

z+6 z+2

z+8 z+4

(2 +6)fo(z +6) — (2 + 4 folz + 4) = Cray

3d)

This equation can be expressed in the form

F(z+2)-F(2) =Gz +2) -G,
1

- _ z2+2i+2 _ 2 z+ 20 )
where F(z) = (z + 4)fo(z + 4) and G(z) = Cray ; 24 + C3a, ; T oied By point (3) of
Remark 2.1, it follows that a constant Cy exists such that F(z) — G(z) = Cy. Hence, since %(z +4) =

r/“%(z), we have

—_— Co Z+2 1 < a+2 !
4 = —— +Cha + +Csa + -
S@) =7+ Ga G+ z+6] P@+2? G+H+6) +8
c, . ) { | 4 2 1 1
= + Cha - + +Csa - * - ¥ '
e F R Gy A ¥ aT @ 2 216 T4 248

Thus point (1) of Remark 2.1 implies
P o(2) = Cor'(2) + Coy [FA(2) + 27 In1(2) + 192)| + Css| 47 Inr(2) + 219(2) + (7).

Therefore
folr) = Co + o |1+ 2In7 + 72| + C3az [41n 7 + 207 + 7]

Next, we proceed to compute the radial function f;.
Lemma 4.3. Under the hypothesis of Theorem 3.1, we have

C

— 1 3 3
Jfa(r) = L+ Car+ Cia? [3r +2rinr+ r3] + Cha, [Zr —— 47 !
r r

+C3(_l3[3}"——+—+}"5

2r 2

Proof. The term 2" in TT,5(z") = T..5T (") appears both sides only from the expressions

(Te—ief_l T, + Teiefl T&IZ + Teszz Tl—lzzz + Tesmj% Ta3z3) (Z”)’

and
(TZTe_ief_1 + Ta]zTeif?fl + Ta222 T62i9f2 + Tﬁ323 Te3i9f3) (Z”).

So both sides must be equal. Using the results of the previous lemmas and evaluating each term on
both sides yields the following:

Qn+2)f12n+3)=2nf(2n+ 1)

m+2 2 m+2 2
:Clal( " " )+C3a%[3( " " )

n+d 2n+2 n+4 2n+2
2n+2 2n 2n+2 2n (4.3)
B ((2n+4)2_(2n+2)2)+2n+6_2n+4
+C2a2(2n+2_2n—2)+ 36_13(211+2_2n—4)'
2n+6 2n+?2 2n+8 2n+2
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We complexify the above equation by considering z = 2n — 4 and we use point (2) of Remark 2.1 to
obtain

GE+6)f1z+T) - @+Hf1(z+5)
4 4
—Cia [0 ) o5 (0 e
z7+8 z+6

7+ 6 B z+4 _Fz+6 _z+4
(z+8)? (z+6)*) z+10 z+8

4.4)

L Cod z+6 7+ 2 i z+6 z
a -— -—.
2 410 z+6 W 412 z+6
We let -
F@)=G@+dfaiz+5) =@z+Hrif(),
and
7+ 4 Ll.z+4 1+4  z+4 L 42i42 2, 7+2i
G(i)=C +C 3 - +
@=Ca % 3a1[z+6 Z+6? z+8 2Zz+21+6 32Z+2l+6

1= 1=

Then Eq (4.4) can be written as F(z+ 2) — F(z) = G(z+ 2) — G(z). Thus, by point (3) of Remark 2.1, a
constant C_; exists such that F(z) = C_; + G(z). Applying partial fraction decomposition to the terms
of G and using point (1) of Remark 2.1, we find that

PG = CLP @+ Q) + Ca; [35() + 28 Tnr(@) + ()|
+Ca [219(2) = (2 + 18(2)| + C3a3[3r8(2) — 27 (2) - %;Z(z) + %?ﬁ(z) +r10@)].

Hence

3
+C3é3[3r——+i+r

¢ 1
far) = =+ Cayr + G [3r+2rlnr+r3] +Cody |2r — — +1°
d r 2r 2

O

The main purpose of the following lemma is to evaluate the radial function f—_,. However, we will
omit some of the lengthy calculations, as they are similar to those in the previous lemmas.

Lemma 4.4. Under the hypothesis of Theorem 3.1, we have

C 1 31 1 1 Inr 1
Fa = () Canal gy -2 -2t 2t s g =T )
3 3 1 13 4
+C16_121"2 — Chas (ﬁ - 51"2 + ﬁ —1”4) C3a4(—3 > -2r 2 _ 57'4 — 7'6)

Proof. The term 7"~! appears on the left-hand side and right-hand side of Eq (3.1) only from
(Tenp o Te+ Ty Ty + Tonf Taer + Tong, Taye + Tong, Tay) (&),

AIMS Mathematics Volume 10, Issue 7, 17232-17247.
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and
(TZTe’Zi"f-z + TﬁJZTﬁ) + TZIzZZ Temfl + Tﬁ323 Temfz + Ta454 Tewﬁ) ().

So both sides must be equal. Next, using Lemma 2.1, we evaluate each term on both sides and we
obtain the following:

(1) Ty, To(2") = 20f (20 + 2)2"",

(2)
" _en =
TpTa:@) = a5 ——fo2mz"!
. 2n L, 2n 2 (2n)?
= |C Caai; -
5+ CalG s T n+ 2)2)
_ 4 (2n)? (2n)* 4
+C - + + SRR
3“1“2( m+2 C@n+22  Cn+2en+d) [
3)
" 2n(2n — 2)— e
Teiefl TﬁzZZ(Z ) = 2 D) f1(2n - 1)Z :
_2n-2 __ /2n(2n-2) 2n—12 2n—72 2n -1
= C C _ 2 _ n ,
[ 125 + Ol Qn+272  C2n+2 2m@n+2) 2+ 1l
" _2n—-4
(4) Ty, Ta(Z") = Caas PP !
" _2n-6 ,_
(5) T, Ta,(2") = C3ay PR !

(6) T.To0p,(2") = 2n - 2) fo2n)2"",

(7)
TalZTﬁ,(z") = 2na;(2n + 2)}8(2}1 +2)r(2n + l)z"_1
Cod 2n L CR 2n 4n N 2n
= a a -
on+2 TN\ 2m+2 2n+22  2n+4
L Cdnd 8n N 4n N 2n el
aa, | — s
MM 0422 T m+4 T 2m+v6) [
2n 2n 6n 4n 2n
8) TanTus(Z) =|Cia + C3a,a + - —~ e
®) TaeTern ) [ R L O wew (2n + 47 3 3)f
n _ 2n
9) TayzT g, (2") = Caas 2n2+ P !
_ no,_
(10) TouTpip,(2") = Caay PR !

We substitute the 10 quantities above into both sides, equate them, complexify the expression by setting
z = 2n — 6, and then use point (2) of Remark 2.1 to obtain the following:

AIMS Mathematics Volume 10, Issue 7, 17232-17247.
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(@ +6)fa(z+8) = (2 +4) fa(z +6)
(246 46\ [ 2 (z+6P
_C2“1( Z+8) +z+10) 2“‘( z+8+(z+10)2)

Coaa —4(z+6)+2(z+6)+z+6 _caa -4 +2(Z+6)2+ (z+6)°
TG 482 T z10 T z+12) U 8T 2482 T z+8)(z+10)] 45
_z+6 _z+4 __[z+6 3(@z+6) 2(z+6)
BTy C1a22+8+C3a1a2(Z+12+ 21 10 (z+10)2)
__ [ (z+D(z+6) 3(z+4) 2(z+4D) _ z+6 _z+2 _ z+6 _zZ
C3“‘“2( @187  z+8 z(z+8))+ R e TR

9
Now, let F(z) = (z + 4)]7_\2(z +6) =(z+ 4)rf\f_2(z) and define the function G(z) as G(z) = Z Gi(2),

i=1
where the values of G are given by

1
(1) Gi(2) = _4C2a%z+_8’
1
1
2) Gy(2) = -6Csayay > ————,
2) G(2) 3“102;“2”8
_z+4
(3) G3(Z) =Cia, s
7+ 8
1
1
4) Gy(z) = -6Csaiay > ————,
4) Ga(2) 30102;Z+2i+8
1
(5) Gs(z) = —14Csa,a, ,
z1+ 8
6) Ge(2) = 8Csady————
(6) Ge(z) L s
3
S 1
(7) G1(z) = —Csaraz ZO —or
1
) 1
(8) Gs(z) = —6C1as ZO T
2 1
(9) Go(z) = —6C3a4 Z m

i=0
Thus, Eq (4.5) simplifies to F(z +2) — F(z) = G(z + 2) — G(z). Therefore, by point (3) of Remark 2.1,
a constant C_, exits such that F(z) = C_, + G(z), which is equivalent to

(z+ 4P f () = Coy + G(2).

Now, dividing both sides by (z + 4) and expanding G(z) using the sums of partial fractions, we obtain

— C_2 1 1 3 1 1
c _ 2 - |- Zc.aa -—
r°f2(2) 14 Caa (Z+4 Z+8) 2C3a1a2 (z+4 Z+8)
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1 1 1 3 1 1
—-Cia,a - + C,a — =Cza;a - —
3611612( ) 1a22+8 5 3a14; (Z+4 Z+8)

1 1 7 1 1
_Ciayan | — - —— |- Lciaa -
3‘””‘2(z+4 z+10) 2 3"1”‘2(z+4 z+8)

1 1 1 1\ 3 1 |
Gty ———— — ~Caiydy | —— — —— | = 2Cya ——
MR Tae T2 36“"Z(z+4 z+6) 2a3(z+4 z+8)

(1 1 (1 |
_C2a3(z+4_z+10)_C3a4(z+4_z+8)

4 (1 1 e[ 1
3\ ra T zr10) M\ zra  Zx12)

Finally, if we apply point (1) of Remark 2.1, the equation above implies

1 31 1
Jal) = — - C,a; (r_ - rz) - nglaz(ﬁ —6r" = 2r* =27 Inr + 15

O

We observe that f_,, obtained in the previous lemma, belongs to L'([0, 1), rdr) if and only if C_, = 0,
C, =0, and C3 = 0. Thus, by Remark 4.1, and Lemmas 4.2 and 4.5, we establish the following:

(1) Ty, =0,

(2) Toup, =0,

(3) Ty, = C\T.,

@) Ty, = Co,

() fa =<+ Car,

r

(6) Te_sz,z = Cl TZQZZ'

This implies that N = 1 in the polar decomposition of the symbol f in Theorem 3.1, and that f(re”) =
1

Z eiké)fk(r).

k=—oc0

Lemma 4.5. Under the hypothesis of Theorem 3.1, we have
fa(r) = Ciayr and f5(r) = Ciazr.
Proof. In Eq (3.2), the term 7"*? arises from

(T, Tz + Ty Tagze + Teng, Tay + Tesog , T2) (@)
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= (Ta:Tenp, + TapTpy + TopTong + ToTep ) @) (4.6)

By using Lemma 2.1, we evaluate each term in Eq (4.6) and we obtain
C, N Cia :|—n+2
2n+4 2n+6 ’

(1) Tpinp , T7:Z") = a12(n + 3)]7_\1(211 +5)7"2 = 4,2n + 6) [
(2) Since fy(r) = Co, T, Tz,2(Z") = Tz,2 T (Z") = CoZ™?,

2n+6
(3) T Ta(@) = C1s2(n + 3720 + N2 = Cray

2n(2n + 6) 2n+ 8
n nzn +06)-— n
4) Tpsop , T2 = PR fan+3)7"2,

=n+2
Z

C Ciay :|Zn+2

(5) Tay:Te-ur,(Z") = a1(2n ; NHf1@2n+3)7" =a;2n +4) [211 5514
=n — n_,
(0) ToT,us, (") = Cras P 2

(7) T-Tos0p,(Z") = 2n + 6)f 3(2n + 5)7"*2,
Substituting these quantities into Eq (4.6) and rearranging them yields

— 2n(2n + 6) — _2n+6 _2n+4 _2n+6 _ 2n
2 “3(2 ———f32 =C_ -C_ — _—
@nt+6)[32n+5) == == f3@n+3) = Coang =7 = Cadig —5 + Casy —g = Cids5 =,
which is equivalent to
— — 2n+2 2n+4 2n+2 2n
2n+2)f3(2 —-2nf;2 =C_ia —-C_ja a - Cia . (4.
(2n+2)f3(2n+5) —2nf_3(2n+3) C1412n+4 1a12n+6+ 1352 C1a32n+6 4.7)
We set z = 2n to complexify Eq (4.7) and we obtain
— — 7+ 2 7+ 4 7+ 2 Z
+2)f3(z+5)—z2f3(z+3)=C_ja —C_ja + Ca —Cia .
(z+2)f3(z+5) —zf3(z+3) 1a1z+4 lalz+6 1832 la3z+6
— o +2
We let F(z) = zf_3(z + 3) = zr3 f_3(z) and the function G be defined as G(z) = Ca3 j_6 - C_lc‘zlz T
Z z

Then the equation above simplifies to
Fz+2)-F(@) =G(z+2)-G(®).

Therefore, by point (3) of Remark 2.1, a constant C_5 exists such that F(z) = C_3 + G(z). Hence we
have

— C; o1 _ 742 C; _ 1 _ (1 1
Pfik)=—+Cia -C_ia =—+Cia -Ciay|=—+ )
f-3(2) e 1 3Z+6 1 1Z(Z+4) E 1 3Z+6 1 1(2Z 2(Z+4))

Using point (1) of Remark 2.1, we deduce that
— — — 1~ 11—
r3f—3(Z) = C_31(Z) + C]C_l3l’6(Z) - C_lc_l] (El(Z) + Er“(z)) .

Therefore,
C_ 1 1
f_3(l’): —3+C16_l3r3——c_16_l1 — +r].
r 2 r

Clearly, f-3(r) belongs to L'([0, 1), 7dr) if and only if C_3 = 0 and C_; = 0. In this case, we have
f_l(}") = Cl(_llr and f_3(}") = C1513r3. O
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We now proceed with the computation of f_4.
Lemma 4.6. Under the hypothesis of Theorem 3.1, we have f_4(r) = Ciaur*.
Proof. In Eq (3.2), the term 73 arises from the following expression:
(Tesing, To + Ty oo + Ten Tage + Toing T2 () (4.8)
= (TTosnp, + Taa Ty + TaTeng, + TaaTeing ) @),

We use Lemma 2.1 to evaluate each term appearing in Eq (4.8), and we obtain

2n(2n + 8
(1) Tysop To(Z') = % Fin+ 42,

(2) since fb(r) = CO? Tf() azz3(Z ) - 11223 Tf()(Z ) = COZ}H—%
2n+ 8

(3) T, Tayet(Z) = C1a842(n + 4720 + 9T = Craus— 1Oz"+3,
4) Tpiog T32(Z") = Clalazi
(5) T:Tosop,(Z) = 2n + 8)f4(2n + 6)7",
n _ 2n _,
(6) TozT,nf(Z") = Cray P 3,
After substituting these terms in Eq (4.8) and rearranging them, we obtain
2n+2 2n
2n +2 2 2 2n+4 - Cia .
Q2n +2)f4(2n+6) = 2nf 4(2n +4) = C16142n+10 Cla42n+8

Thus, by setting z = 2n, the equation above becomes
F(z+2)-F(z) = G(z+2) - G(2),

where F(z) = z f 4(z+4) = o f 4(z) and G(z) = C 1a4 . Point (3) of Remark 2.1 implies the existence
of a constant C_4 such that F(z) = C_4 + G(2). Hence

Pl = C_y1(2) + Craur’(2).

Therefore, we deduce that f 4(r) = C7 + Cyaur*. Clearly, f, belongs to L'([0, 1), rdr) if and only if
C_4 = 0. Finally, we must have f_4(r) = C asr*. O

Using the same technique as in the previous lemmas, we establish the following by induction.
Lemma 4.7. If Egs (3.1) and (3.2) are satisfied, then for all k > 1, we have f_i(r) = Car*.

Proof. By Lemma 4.5, we have f_,(r) = C,a,r, which establishes the base case. Now, assume that the
formula holds for some k > 1; that is

foi(r) = Crar.
Following a similar argument as in the proof of Lemma 4.6, we obtain

(k+1)

S-+y(r) = + Crag .

For f_+1) to belong to L'([0, 1), rdr), it must satisfy C_k+1) = 0. Thus, we conclude that

Foain(r) = Craga 7,

which completes the induction. O
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5. Proof of the main theorem

Combining all the lemmas from the previous section, we conclude that the symbol f in Theorem 3.1
can be written as

-1
flrey = " i) + for) + ) € (),
k=—c0

which, by the results established in the lemmas, becomes

-1
f(reie) =Ce%r + Co + Z e ar .

k=—o00

This is equivalent to

f@) =Ciz+Co+Cy Y ad.
I=1
Using the linearity of Toeplitz operators with respect to the symbol, this implies that the Toeplitz
operator 7'; takes the form
Tf =CT,+Col,

where u is as in Theorem 3.1 and 7 denotes the identity operator. This completes the proof.

Final Remark. The results in this paper describe bounded Toeplitz operators with truncated symbols
that commute with T,,;, where g is an analytic function. It is worth noting that the analytic part z in
the symbol z + g can be replaced by 7" or, more generally, by a polynomial in z, and the same proof
techniques can still be applied. However, this generalization comes at the cost of significantly more
involved calculations, which can quickly become tedious and lengthy.

Indeed, in our main result, where the analytic polynomial is simply z, we already needed to compute
the radial components f; explicitly for k = N down to k = —4. It is natural to expect that replacing z
by a higher-degree polynomial in z would require computing even more radial components f;.

Nevertheless, we are confident that our proof strategy can be adjusted to accommodate analytic
polynomials of an arbitrary degree. In particular, we believe that the main result can be extended to
the following more general statement: If 7, as in Theorem 3.1, commutes with 7, where u(z) =
p(z) + g(z), with p(z) being an analytic polynomial and g(z) = Y2, a7 being a bounded analytic
function, then Ty must be a polynomial in T, of degree at most one.
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