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1. Introduction

Let dA = r dr dθ
π

, where (r, θ) are the polar coordinates, denote the normalized Lebesgue area
measure on the unit disk D so that D has the measure 1. The space L2(D, dA) consists of all Lebesgue
square-integrable functions on D and forms a Hilbert space with the inner product

〈 f , g〉 =

∫
D

f (z)g(z) dA(z).

The harmonic Bergman space, denoted L2
h(D), is the closed subspace of L2(D, dA) comprising all

complex-valued L2-harmonic functions onD. Let Q represent the orthogonal projection from L2(D, dA)
onto L2

h(D). This projection is given by the integral operator

Q f (z) =

∫
D

(
1

(1 − z̄w)2 +
1

(1 − zw̄)2 − 1
)

f (w) dA(w), z ∈ D,

for any f ∈ L2(D, dA). It is well known that Q is bounded from L2(D, dA) onto L2
h(D).

For a function u ∈ L1(D, dA), we define the Toeplitz operator Tu with the symbol u on L2
h by

Tu f = Q(u f ), (1.1)
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for f ∈ L2
h(D), provided that the product u f is in L2(D, dA). This operator is densely defined on the

polynomials and is not bounded in general. However, if u is bounded on D, then Tu is bounded and
||Tu|| ≤ ||u||∞.

A symbol u is called quasihomogeneous of degree p, where p is an integer, if it can be expressed in
the form u(reiθ) = eipθφ(r), where φ is a radial function. In this case, the associated Toeplitz operator Tu

is called a quasihomogeneous Toeplitz operator of degree p. The study of these operators is motivated
by the structural decomposition of L2(D, dA), which can be written as L2(D, dA) =

⊕
k∈Z eikθR, where

R denotes the space of square-integrable radial functions on [0, 1) with respect to the measure rdr. This
decomposition implies that any function f ∈ L2(D, dA) admits a polar decomposition f (z) = f (reiθ) =∑

k∈Z eikθ fk(r), where each fk(r) is a radial function. Moreover, we say that f is truncated above if its
polar decomposition is of the form f (reiθ) =

∑N
k=−∞ eikθ fk(r), for some integer N.

Our focus is on identifying the conditions that characterize the symbols of commuting Toeplitz
operators on L2

h(D). This problem has been extensively explored in the contexts of the classical
Hardy space and the analytic Bergman space over the years. The study of Toeplitz operators on
L2

h(D) exhibits significant differences compared with their counterparts on the analytic Bergman space
and remains less understood. However, there has been growing interest in investigating this issue
within the framework of the harmonic Bergman space. For instance, Choe and Lee [1] established
that two analytic Toeplitz operators on L2

h (i.e., Toeplitz operators with analytic symbols) commute
if and only if their symbols, along with the constant function 1, are linearly dependent. Subsequent
works such as [2,3] demonstrated that an analytic Toeplitz operator and a co-analytic Toeplitz operator
on L2

h(D) can commute only if at least one of their symbols is a constant function. In [4], the
conditions under which the product of two quasihomogeneous Toeplitz operators remains a Toeplitz
operator were investigated. Building upon this, the work in [5] delved into the commuting problem
for quasihomogeneous Toeplitz operators on L2

h(D), where the authors characterized the commuting
Toeplitz operators with quasihomogeneous symbols. In addition, they showed that a Toeplitz operator
with an analytic or co-analytic monomial symbol commutes with another Toeplitz operator only in
the trivial case. For further results on commuting Toeplitz operators in harmonic Bergman spaces, the
reader may consult [1, 2, 6] and the references therein.

The primary goal of our study is to characterize a special class of commuting Toeplitz operators
acting on L2

h(D). More specifically, we characterize all Toeplitz operators with truncated-above
symbols that commute with the Toeplitz operator Tu, whose symbol is the harmonic function u(z) =

z + g(z), where g(z) =
∑∞

n=0 anzn is a bounded analytic function on D.
One of the main challenges in this problem arises from the interplay between the multiplication

operators induced by the symbols and the projection onto the harmonic Bergman space. Unlike
the analytic Bergman space, where the Bergman projection has an explicit integral representation,
the harmonic Bergman projection introduces additional complexities that make computing Toeplitz
operator products more difficult. Consequently, many classical results from the analytic setting do not
directly extend to the harmonic case, necessitating the development of new techniques and approaches.
To emphasize the difference between analytic and harmonic Bergman spaces, the authors in [7] proved,
that in the analytic Bergman space, if T f (with f having a polar decomposition truncated above)
commutes with Tz+z̄, then T f must be a polynomial in Tz+z̄ of degree at most 3; similarly, if T f commutes
with Tz+z̄2 , then T f is necessarily a polynomial in Tz+z̄ of degree at most 2. However, as we will show
in our main theorem, this property does not hold in the harmonic Bergman space.
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To structure our analysis effectively, this paper is organized as follows: Section 2 presents the key
preliminary results that are essential for proving the main theorem. Section 3 formally states the main
result. Finally, Section 4 is devoted to its proof, which is divided into several lemmas to enhance clarity
and systematically manage the technical details.

2. Tools

The Mellin transform φ̂ of a radial function φ ∈ L1([0, 1), r dr) is given by

φ̂(z) =

∫ 1

0
φ(r)rz−1 dr.

It is well known that for such functions, the Mellin transform is bounded in the right half-plane {z ∈
C : <z ≥ 2} and is analytic in {z ∈ C : <z > 2}.

The following lemma describes the action of quasihomogeneous Toeplitz operators on elements of
the orthogonal basis of L2

h(D). See [4, Lemma 2.1].

Lemma 2.1. Let k ∈ Z and let φ be a radial in L1([0, 1), rdr). Then, for each n ∈ N, the Toeplitz
operator Teikθφ satisfies

Teikθφ(zn) =

2(n + k + 1)φ̂(2n + k + 2)zn+k, if n ≥ −k,

2(−n − k + 1)φ̂(−k + 2)z̄−n−k, if n < −k.

Similarly,

Teikθφ(z̄n) =

2(n − k + 1)φ̂(2n − k + 2)z̄n−k, if n ≥ k,

2(k − n + 1)φ̂(k + 2)zk−n, if n < k.

A fundamental result states that the Mellin transform of a function is uniquely determined by its
values on an arithmetic sequence of integers. This is formalized in the following classical theorem [8,
p. 102].

Theorem 2.1. Let f be a bounded analytic function in the right half-plane {z ∈ C : <z > 0} that
vanishes at an infinite sequence of distinct points d1, d2, . . . satisfying the following:

(i) inf{|dn|} > 0, and
(ii)

∑
n≥1
<

(
1
dn

)
= ∞.

Then f must be identically zero on {z ∈ C : <z > 0}.

Another important result we frequently use is the following classical lemma (see [9, Lemma 7]):

Lemma 2.2. A bounded, periodic, meromorphic function defined on a right half-plane must be
constant.

The following lemma is crucial for the proof of the main result and can be deduced from [5,
Theorem 3.8]:
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Lemma 2.3. Let f (reiθ) = eipθφ(r) be a quasihomogenous symbol, where p ∈ Z+ and φ(r) ∈
L1([0, 1), rdr). If T f Tzn = TznT f for n ≥ 1 integer, then φ(r) = Crp. In other words, f must be
analytic of the form f (z) = Czp.

Remark 2.1. The following observations will be useful in our proofs.

1) A straightforward calculation shows that

r̂n(z) =
1

z + n
, for n ∈ Z,

and
̂ra ln(r)b(z) =

(−1)bb!
(a + z)b+1 ,

where a > 0 and b is a non-negative integer.
2) Regarding Theorem 2.1, we apply it in the following setting. Suppose (nk)k is an arithmetic

sequence of positive integers and that, for some radial function φ, we have φ̂(nk) = 0 for all k. By
Theorem 2.1, this forces φ̂ to be identically zero in the right half-plane, implying that φ itself must
vanish there as well.

3) Lemma 2.2 is a key tool in our arguments. In our proofs, we encounter functional equations of
the form

F(z + p) − F(z) = G(z + p) −G(z),

where <(z) > 0, p is an integer, and F and G are bounded analytic functions in the right half-
plane. Applying Lemma 2.2, we conclude that F(z) = C + G(z) for some constant C.

3. Main result

Given a symbol u(z) = z + g(z), where g(z) =
∑∞

n=1 anzn is a bounded analytic function on D, we aim
to characterize all symbols of the form (i.e., symbols whose polar decomposition is truncated above)

f (reiθ) =

N∑
n=−∞

einθ fn(r) N ≥ 1,

in L1(D, dA) for which the associated Toeplitz operators T f are bounded and commute with Tu. It is
understood here that fN , 0. We recall that T f commutes with Tu if and only if

T f Tu(zk) = TuT f (zk), (3.1)

and
T f Tu(z̄k) = TuT f (z̄k), (3.2)

for all vectors zk and z̄k in the orthogonal basis of L2
h(D).

Our main theorem can be stated as follows.

Theorem 3.1. Let u(z) = z+
∑∞

l=1 ālz̄l. If a nonzero function f of the form f (reiθ) =
∑N

k=−∞ eikθ fk(r), with
N ≥ 1, such that T f commutes with Tu, then T f is a polynomial of degree at most one in Tu. In other
words, the constants C1,C0 exist such that T f = C1Tu + C0I, where I denotes the identity operator.

AIMS Mathematics Volume 10, Issue 7, 17232–17247.
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4. Key lemmas for the proof of the main theorem

The proof of our main result is quite lengthy and involves intricate computations. To enhance clarity
and readability, we have structured the proof into several lemmas. The first lemma establishes that the
highest degree N of f in Theorem 3.1 cannot exceed 3. However, we will later demonstrate that N
must, in fact, be equal to 1.

Lemma 4.1. Under the hypothesis of Theorem 3.1, we have N ≤ 3.

Proof. The term in z of degree n+N +1 in Eq (3.1) appears on both sides, originating from TeiNθ fN Tz(zn)
and TzTeiNθ fN (zn). Therefore, we have

TeiNθ fN Tz(zn) = TzTeiNθ fN (zn),

for every n. By Lemma 2.3, this implies that eiNθ fN = CNzN for some constant CN . Similarly, the term
in z of degree n + N appears on both sides only from Tei(N−1)θ fN−1Tz(zn) and TzTei(N−1)θ fN−1(z

n). Applying
Lemma 2.3 again, we conclude that ei(N−1)θ fN−1 is analytic and satisfies ei(N−1)θ fN−1 = CN−1zN−1 for
some constant CN−1.

Next, we turn our attention to the radial function fN−2. The term in z of degree n + N − 1 comes
from (

TCNzN Tā1 z̄ + Tei(N−2)θ fN−2Tz

)
(zn) =

(
Tā1 z̄TCNzN + TzTei(N−2)θ fN−2

)
(zn).

Using Lemma 2.1, the previous equation implies

CN ā1
2n

2n + 2
+ (2n + 2N) f̂N−2(2n + N + 2) = CN ā1

2n + 2N
2n + 2N + 2

+ (2n + 2N − 2) f̂N−2(2n + N),

which is equivalent to

2(n + N) f̂N−2(2n + N + 2) − 2(n + N − 1) f̂N−2(2n + N) = CN ā1
2n + 2N

2n + 2N + 2
−CN ā1

2n
2n + 2

.

We complexify the equation above by letting z = 2n and we use point (2) of Remark 2.1 to obtain

(z + 2N) f̂N−2(z + N + 2) − (z + 2N − 2) f̂N−2(z + N) = CN ā1
z + 2N

z + 2N + 2
−CN ā1

z
z + 2

. (4.1)

Define F(z) = (z + 2N − 2) f̂N−2(z + N) and G(z) = CN ā1

N−1∑
i=0

z + 2i
z + 2i + 2

. Then Eq (4.1) becomes

F(z + 2) − F(z) = G(z + 2) −G(z).

Thus, point (3) of Remark 2.1 implies the existence of a constant CN−2 such that F(z) −G(z) = CN−2.
Equivalently

(z + 2N − 2) f̂N−2(z + N) = CN−2 + CN ā1

N−1∑
i=0

z + 2i
z + 2i + 2

. (4.2)
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Using partial fraction decomposition and observing that f̂N−2(z + N) = ̂rN fN−2(z), we obtain

̂rN fN−2(z) =
CN−2

z + 2N − 2
+ CN ā1

N−1∑
i=0

z + 2i
(z + 2N − 2)(z + 2i + 2)

=
CN−2

z + 2N − 2
+ CN ā1

 1
z + 2N

+

N−2∑
i=0

z + 2i
(z + 2N − 2)(z + 2i + 2)


=

CN−2

z + 2N − 2
+ CN ā1

[
1

z + 2N
+

z + 2N − 4
(z + 2N − 2)2 +

N−3∑
i=0

z + 2i
(z + 2N − 2)(z + 2i + 2)

]
=

CN−2

z + 2N − 2
+ CN ā1

[
1

z + 2N
+

1
z + 2N − 2

−
2

(z + 2N − 2)2

+

N−3∑
i=0

(
2 − 2N + 2i

(4 − 2N + 2i)(z + 2N − 2)
−

2
(2N − 2i − 4)(z + 2i + 2)

) ]
.

Using point (1) of Remark 2.1, it follows that

̂rN fN−2(z) = CN−2r̂2N−2(z) + CN ā1

[
r̂2N(z) + r̂2N−2(z) + ̂2r2N−2 ln r(z)

+

N−3∑
i=0

(
2 − 2N + 2i
4 − 2N + 2i

r̂2N−2(z) −
2

2N − 2i − 4
r̂2i+2(z)

) ]
.

Therefore

fN−2(r) = CN−2rN−2 + CN ā1

[
rN + rN−2 + 2rN−2 ln r +

N−3∑
i=0

(
2 − 2N + 2i
4 − 2N + 2i

rN−2 −
2

2N − 2i − 4
r2i+2−N

)]
.

Observe that fN−2 belongs L1([0, 1), rdr) if and only if 2i+2−N +1 ≥ 0, which simplifies to N ≤ 2i+3
for all i = 0, 1, 2, . . . ,N−3. Consequently, this condition must hold for i = 0, which leads to N ≤ 3. �

Note. With respect to the notation used in the previous proof, we would like to remind the reader
and draw their attention to the fact that the functions fk(r) represent the radial component in the polar
decomposition

f (reiθ) =

N∑
k=−∞

eikθ fk(r).

The constants Ck appear naturally in the process of determining each corresponding radial function fk.
The subscript k in Ck is intentionally chosen to indicate the association between the constant and the
corresponding radial term fk. This notation is consistently used throughout the paper to maintain the
clarity and traceability of the decomposition components.

Remark 4.1. Lemma 4.1 implies the following:

(1) f3(r) = C3r3.
(2) f2(r) = C2r2.
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(3) To find f1(r), we plug N = 3 in Eq (4.2) to obtain

r̂3 f1(z) =
C1

z + 4
+ C3ā1

2∑
i=0

z + 2i
(z + 4)(z + 2i + 2)

=
C1

z + 4
+ C3ā1

[
z

(z + 4)(z + 2)
+

z + 2
(z + 4)2 +

z + 4
(z + 6)(z + 4)

]
=

C1

z + 4
+ C3ā1

[
−1

z + 2
+

3
z + 4

+
−2

(z + 4)2 +
1

z + 6

]
= C1r̂4(z) + C3ā1

[
r̂6(z) + 3r̂4(z) + 2r̂4 ln r(z) − r̂2(z)

]
.

Hence, point (2) of Remark 2.1 yields

f1(r) = C1r + C3ā1

[
r3 + 3r + 2r ln r −

1
r

]
.

So far, using Lemma 4.1 and Remark 4.1, we have established that any Toeplitz operator with the

symbol f (reiθ) =

N∑
k=−∞

eikθ fk(r) that commutes with Tz+g, where g(z) =

∞∑
l=1

alzl is a bounded analytic

function on D, must take the form

f (reiθ) = C3z3 + C2z2 + eiθ

(
C1r + C3ā1

[
r3 + 3r + 2r ln r −

1
r

])
+

0∑
k=−∞

eikθ fk(r).

In the following lemmas, we compute the exact expressions of f0(r), f−1(r), and f−2(r).

Lemma 4.2. Under the hypothesis of Theorem 3.1, we have

f0(r) = C0 + C2ā1

[
1 + 2 ln r + r2

]
+ C3ā2

[
4 ln r + 2r2 + r4

]
.

Proof. For n ≥ 1, the term zn+1 in T f Tz+g(zn) = Tz+gT f (zn) appears both sides only from the expressions(
T f0Tz + Te2iθ f2Tā1 z̄ + Te3iθ f3Tā2 z̄2

)
(zn),

and (
TzT f0 + Tā1 z̄Te2iθ f2 + Tā2 z̄2Te3iθ f3

)
(zn).

Thus, applying Lemma 2.1, we obtain

(2n + 4) f̂0(2n + 4) + C2ā1
2n

2n + 2
+ C3ā2

2n − 2
2n + 2

= (2n + 2) f̂0(2n + 2) + C2ā1
2n + 4
2n + 6

+ C3ā2
2n + 4
2n + 8

,

which can be written as

(2n + 4) f̂0(2n + 4) − (2n + 2) f̂0(2n + 2) = C2ā1

[
2n + 4
2n + 6

−
2n

2n + 2

]
+ C3ā2

[
2n + 4
2n + 8

−
2n − 2
2n + 2

]
.

We complexify the equation above by considering z = 2n − 2 and we use point (2) of Remark 2.1 to
obtain
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(z + 6) f̂0(z + 6) − (z + 4) f̂0(z + 4) = C2ā1

[
z + 6
z + 8

−
z + 2
z + 4

]
+ C3ā2

[
z + 6
z + 10

−
z

z + 4

]
.

This equation can be expressed in the form

F(z + 2) − F(z) = G(z + 2) −G(z),

where F(z) = (z + 4) f̂0(z + 4) and G(z) = C2ā1

1∑
i=0

z + 2i + 2
z + 2i + 4

+ C3ā2

2∑
i=0

z + 2i
z + 2i + 4

. By point (3) of

Remark 2.1, it follows that a constant C0 exists such that F(z) − G(z) = C0. Hence, since f̂0(z + 4) =

r̂4 f0(z), we have

r̂4 f0(z) =
C0

z + 4
+ C2ā1

[
z + 2

(z + 4)2 +
1

z + 6

]
+ C3ā2

[
z

(z + 2)2 +
z + 2

(z + 4)(z + 6)
+

1
z + 8

]
=

C0

z + 4
+ C2ā1

[
1

z + 4
−

2
(z + 4)2 +

1
z + 6

]
+ C3ā2

[
1

z + 4
−

4
(z + 4)2 +

2
z + 6

−
1

z + 4
+

1
z + 8

]
.

Thus point (1) of Remark 2.1 implies

r̂4 f0(z) = C0r̂4(z) + C2ā1

[
r̂4(z) + 2r̂4 ln r(z) + r̂6(z)

]
+ C3ā2

[
4r̂4 ln r(z) + 2r̂6(z) + r̂8(z)

]
.

Therefore
f0(r) = C0 + C2ā1

[
1 + 2 ln r + r2

]
+ C3ā2

[
4 ln r + 2r2 + r4

]
.

�

Next, we proceed to compute the radial function f−1.

Lemma 4.3. Under the hypothesis of Theorem 3.1, we have

f−1(r) =
C−1

r
+ C1ā1r + C3ā2

1

[
3r + 2r ln r + r3

]
+ C2ā2

[
2r −

1
r

+ r3
]

+ C3ā3

[
3r −

5
2r

+
3r3

2
+ r5

]
.

Proof. The term zn in T f Tz+g(zn) = Tz+gT f (zn) appears both sides only from the expressions(
Te−iθ f−1Tz + Teiθ f1Tā1 z̄ + Te2iθ f2Tā2 z̄2 + Te3iθ f3Tā3 z̄3

)
(zn),

and (
TzTe−iθ f−1 + Tā1 z̄Teiθ f1 + Tā2 z̄2Te2iθ f2 + Tā3 z̄3Te3iθ f3

)
(zn).

So both sides must be equal. Using the results of the previous lemmas and evaluating each term on
both sides yields the following:

(2n + 2) f̂−1(2n + 3) − 2n f̂−1(2n + 1)

=C1ā1

(
2n + 2
2n + 4

−
2n

2n + 2

)
+ C3ā2

1

[
3
(
2n + 2
2n + 4

−
2n

2n + 2

)
− 2

(
2n + 2

(2n + 4)2 −
2n

(2n + 2)2

)
+

2n + 2
2n + 6

−
2n

2n + 4

]
+ C2ā2

(
2n + 2
2n + 6

−
2n − 2
2n + 2

)
+ C3ā3

(
2n + 2
2n + 8

−
2n − 4
2n + 2

)
.

(4.3)
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We complexify the above equation by considering z = 2n − 4 and we use point (2) of Remark 2.1 to
obtain

(z + 6) f̂−1(z + 7) − (z + 4) f̂−1(z + 5)

=C1ā1

(
z + 6
z + 8

−
z + 4
z + 6

)
+ C3ā2

1

[
3
(
z + 6
z + 8

−
z + 4
z + 6

)
− 2

(
z + 6

(z + 8)2 −
z + 4

(z + 6)2

)
+

z + 6
z + 10

−
z + 4
z + 8

]
+ C2ā2

(
z + 6

z + 10
−

z + 2
z + 6

)
+ C3ā3

(
z + 6
z + 12

−
z

z + 6

)
.

(4.4)

We let
F(z) = (z + 4) f̂−1(z + 5) = (z + 4)r̂5 f−1(z),

and

G(z) = C1ā1
z + 4
z + 6

+ C3ā2
1

[
3

z + 4
z + 6

− 2
z + 4

(z + 6)2 +
z + 4
z + 8

]
+ C2ā2

1∑
i=0

z + 2i + 2
z + 2i + 6

+ C3ā3

2∑
i=0

z + 2i
z + 2i + 6

.

Then Eq (4.4) can be written as F(z + 2) − F(z) = G(z + 2) −G(z). Thus, by point (3) of Remark 2.1, a
constant C−1 exists such that F(z) = C−1 + G(z). Applying partial fraction decomposition to the terms
of G and using point (1) of Remark 2.1, we find that

r̂5 f−1(z) = C−1r̂4(z) + C1ā1r̂6(z) + C3ā2
1

[
3r̂6(z) + 2r̂6 ln r(z) + r̂8(z)

]
+C2ā2

[
2r̂6(z) − r̂4(z) + r̂8(z)

]
+ C3ā3

[
3r̂6(z) − 2r̂4(z) −

1
2

r̂4(z) +
3
2

r̂8(z) + r̂10(z)
]
.

Hence

f−1(r) =
C−1

r
+ C1ā1r + C3ā2

1

[
3r + 2r ln r + r3

]
+ C2ā2

[
2r −

1
r

+ r3
]

+ C3ā3

[
3r −

5
2r

+
3r3

2
+ r5

]
.

�

The main purpose of the following lemma is to evaluate the radial function f−2. However, we will
omit some of the lengthy calculations, as they are similar to those in the previous lemmas.

Lemma 4.4. Under the hypothesis of Theorem 3.1, we have

f−2(r) =
C−2

r2 −C2ā2
1

(
1
r2 − r2

)
−C3ā1ā2

(
31
4r2 − 6r2 − 2r4 − 2r2 ln r +

1
4r6 +

1
2r4 −

ln r
r2 −

1
2

)
+C1ā2r2 −C2ā3

(
3

2r2 −
3
2

r2 +
1
r2 − r4

)
−C3ā4

(
13
3r2 − 2r2 −

4
3

r4 − r6
)
.

Proof. The term zn−1 appears on the left-hand side and right-hand side of Eq (3.1) only from(
Te−2iθ f−2Tz + T f0Tā1 z̄ + Teiθ f1Tā2 z̄2 + Te2iθ f2Tā3 z̄3 + Te3iθ f3Tā4 z̄4

)
(zn),
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and (
TzTe−2iθ f−2 + Tā1 z̄T f0 + Tā2 z̄2Teiθ f1 + Tā3 z̄3Te2iθ f2 + Tā4 z̄4Te3iθ f3

)
(zn).

So both sides must be equal. Next, using Lemma 2.1, we evaluate each term on both sides and we
obtain the following:

(1) Te−2iθ f−2Tz(zn) = 2n f̂−2(2n + 2)zn−1,

(2)

T f0Tā1 z̄(zn) = ā1
(2n)2

2n + 2
f̂0(2n)zn−1

=

[
C0ā1

2n
2n + 2

+ C2ā2
1

( 2n
2n + 2

−
2

2n + 2
+

(2n)2

(2n + 2)2

)
+C3ā1ā2

(
−

4
2n + 2

+ 2
(2n)2

(2n + 2)2 +
(2n)2

(2n + 2)(2n + 4)

) ]
zn−1,

(3)

Teiθ f1Tā2 z̄2(zn) = ā2
2n(2n − 2)

2n + 2
f̂1(2n − 1)zn−1

=

[
C1ā2

2n − 2
2n + 2

+ C3ā1ā2

(2n(2n − 2)
(2n + 2)2 + 3

2n − 2
2n + 2

− 2
2n − 2

2n(2n + 2)
−

2n
2n + 2

)]
zn−1,

(4) Te2iθ f2Tā3 z̄3(zn) = C2ā3
2n − 4
2n + 2

zn−1,

(5) Te3iθ f3Tā4 z̄4(zn) = C3ā4
2n − 6
2n + 2

zn−1,

(6) TzTe−2iθ f−2(z
n) = (2n − 2) f̂−2(2n)zn−1,

(7)

Tā1 z̄T f0(z
n) = 2nā1(2n + 2) f̂0(2n + 2)̂r(2n + 1)zn−1

=

[
C0ā1

2n
2n + 2

+ C2ā2
1

(
2n

2n + 2
−

4n
(2n + 2)2 +

2n
2n + 4

)
+C3ā1ā2

(
−

8n
(2n + 2)2 +

4n
2n + 4

+
2n

2n + 6

) ]
zn−1,

(8) Tā2 z̄2Teiθ f1(z
n) =

[
C1ā2

2n
2n + 4

+ C3ā1ā2

( 2n
2n + 6

+
6n

2n + 4
−

4n
(2n + 4)2 −

2n
2n + 2

)]
zn−1,

(9) Tā3 z̄3Te2iθ f2(z
n) = C2ā3

2n
2n + 6

zn−1,

(10) Tā4 z̄4Te3iθ f3(z
n) = C3ā4

2n
2n + 8

zn−1.

We substitute the 10 quantities above into both sides, equate them, complexify the expression by setting
z = 2n − 6, and then use point (2) of Remark 2.1 to obtain the following:
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(z + 6) f̂−2(z + 8) − (z + 4) f̂−2(z + 6)

=C2ā2
1

(
−2(z + 6)
(z + 8)2 +

z + 6
z + 10

)
−C2ā2

1

(
−

2
z + 8

+
(z + 6)2

(z + 10)2

)
+ C3ā1ā2

(
−4(z + 6)
(z + 8)2 +

2(z + 6)
z + 10

+
z + 6
z + 12

)
−C3ā1ā2

(
−4

z + 8
+

2(z + 6)2

(z + 8)2 +
(z + 6)2

(z + 8)(z + 10)

)
+ C1ā2

z + 6
z + 10

−C1ā2
z + 4
z + 8

+ C3ā1ā2

(
z + 6

z + 12
+

3(z + 6)
z + 10

−
2(z + 6)
(z + 10)2

)
−C3ā1ā2

(
(z+4)(z+6)

(z + 8)2 +
3(z+4)
z + 8

−
2(z+4)
z(z+8)

)
+C2ā3

z+6
z+12

−C2ā3
z+2
z+8

+C3ā4
z+6
z+8
−C3ā4

z
z+8

.

(4.5)

Now, let F(z) = (z + 4) f̂−2(z + 6) = (z + 4)r̂6 f−2(z) and define the function G(z) as G(z) =

9∑
i=1

Gi(z),

where the values of G are given by

(1) G1(z) = −4C2ā2
1

1
z + 8

,

(2) G2(z) = −6C3ā1ā2

1∑
i=0

1
z + 2i + 8

,

(3) G3(z) = C1ā2
z + 4
z + 8

,

(4) G4(z) = −6C3ā1ā2

1∑
i=0

1
z + 2i + 8

,

(5) G5(z) = −14C3ā1ā2
1

z + 8
,

(6) G6(z) = 8C3ā1ā2
1

(z + 8)2 ,

(7) G7(z) = −C3ā1ā2

3∑
i=0

1
z + 2i

,

(8) G8(z) = −6C2ā3

1∑
i=0

1
z + 2i + 8

,

(9) G9(z) = −6C3ā4

2∑
i=0

1
z + 2i + 8

.

Thus, Eq (4.5) simplifies to F(z + 2) − F(z) = G(z + 2) −G(z). Therefore, by point (3) of Remark 2.1,
a constant C−2 exits such that F(z) = C−2 + G(z), which is equivalent to

(z + 4)r̂6 f−2(z) = C−2 + G(z).

Now, dividing both sides by (z + 4) and expanding G(z) using the sums of partial fractions, we obtain

r̂6 f−2(z) =
C−2

z + 4
−C2ā2

1

(
1

z + 4
−

1
z + 8

)
−

3
2

C3ā1ā2

(
1

z + 4
−

1
z + 8

)
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−C3ā1ā2

(
1

z + 4
−

1
z + 10

)
+ C1ā2

1
z + 8

−
3
2

C3ā1ā2

(
1

z + 4
−

1
z + 8

)
−C3ā1ā2

(
1

z + 4
−

1
z + 10

)
−

7
2

C3ā1ā2

(
1

z + 4
−

1
z + 8

)
+

1
2

C3ā1ā2
1

z + 4
−

1
2

C3ā1ā2
1

z + 8
− 2C3ā1ā2

1
(z + 8)2

−
1
4

C3ā1ā2

(
1
z
−

1
z + 4

)
−

1
2

C3ā1ā2

(
1

z + 2
−

1
z + 4

)
−C3ā1ā2

1
(z + 4)2 −

1
2

C3ā1ā2

(
1

z + 4
−

1
z + 6

)
−

3
2

C2ā3

(
1

z + 4
−

1
z + 8

)
−C2ā3

(
1

z + 4
−

1
z + 10

)
−C3ā4

(
1

z + 4
−

1
z + 8

)
−

4
3

C3ā4

(
1

z + 4
−

1
z + 10

)
−C3ā4

(
1

z + 4
−

1
z + 12

)
.

Finally, if we apply point (1) of Remark 2.1, the equation above implies

f−2(r) =
C−2

r2 −C2ā2
1

(
1
r2 − r2

)
−C3ā1ā2

(
31
4r2 − 6r2 − 2r4 − 2r2 ln r +

1
4r6

+
1

2r4 −
ln r
r2 −

1
2

)
+ C1ā2r2 −C2ā3

(
3

2r2 −
3
2

r2 +
1
r2 − r4

)
−C3ā4

(
13
3r2 − 2r2 −

4
3

r4 − r6
)
.

�

We observe that f−2, obtained in the previous lemma, belongs to L1([0, 1), rdr) if and only if C−2 = 0,
C2 = 0, and C3 = 0. Thus, by Remark 4.1, and Lemmas 4.2 and 4.5, we establish the following:

(1) Te3iθ f3 = 0,
(2) Te2iθ f2 = 0,
(3) Teiθ f1 = C1Tz,
(4) T f0 = C0,
(5) f−1 = C−1

r + C1ā1r,
(6) Te−2iθ f−2 = C1Tā2 z̄2 .

This implies that N = 1 in the polar decomposition of the symbol f in Theorem 3.1, and that f (reiθ) =
1∑

k=−∞

eikθ fk(r).

Lemma 4.5. Under the hypothesis of Theorem 3.1, we have

f−1(r) = C1ā1r and f−3(r) = C1ā3r3.

Proof. In Eq (3.2), the term z̄n+2 arises from(
Te−iθ f−1Tā1 z̄ + T f0Tā2 z̄2 + Teiθ f1Tā3 z̄3 + Te−3iθ f−3Tz

)
(z̄n)
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=
(
Tā1 z̄Te−iθ f−1 + Tā2 z̄2T f0 + Tā3 z̄3Teiθ f1 + TzTe−3iθ f−3

)
(z̄n) (4.6)

By using Lemma 2.1, we evaluate each term in Eq (4.6) and we obtain

(1) Te−iθ f−1Tā1 z̄(z̄n) = ā12(n + 3) f̂−1(2n + 5)z̄n+2 = ā1(2n + 6)
[ C−1

2n + 4
+

C1ā1

2n + 6

]
z̄n+2,

(2) Since f0(r) = C0, T f0Tā2 z̄2(z̄n) = Tā2 z̄2T f0(z̄
n) = C0z̄n+2,

(3) Teiθ f1Tā3 z̄3(z̄n) = C1ā32(n + 3)̂r(2n + 7)z̄n+2 = C1ā3
2n + 6
2n + 8

z̄n+2,

(4) Te−3iθ f−3Tz(z̄n) =
2n(2n + 6)

2n + 2
f̂−3(2n + 3)z̄n+2,

(5) Tā1 z̄Te−iθ f−1(z̄
n) = ā1(2n + 4) f̂−1(2n + 3)z̄n+2 = ā1(2n + 4)

[ C−1

2n + 2
+

C1ā1

2n + 4

]
z̄n+2,

(6) Tā3 z̄3Teiθ f1(z̄
n) = C1ā3

2n
2n + 2

z̄n+2,

(7) TzTe−3iθ f−3(z̄
n) = (2n + 6) f̂−3(2n + 5)z̄n+2.

Substituting these quantities into Eq (4.6) and rearranging them yields

(2n + 6) f̂−3(2n + 5)−
2n(2n + 6)

2n + 2
f̂−3(2n + 3) = C−1ā1

2n + 6
2n + 4

−C−1ā1
2n + 4
2n + 2

+C1ā3
2n + 6
2n + 8

−C1ā3
2n

2n + 2
,

which is equivalent to

(2n + 2) f̂−3(2n + 5)− 2n f̂−3(2n + 3) = C−1ā1
2n + 2
2n + 4

−C−1ā1
2n + 4
2n + 6

+ C1ā3
2n + 2
2n + 8

−C1ā3
2n

2n + 6
. (4.7)

We set z = 2n to complexify Eq (4.7) and we obtain

(z + 2) f̂−3(z + 5) − z f̂−3(z + 3) = C−1ā1
z + 2
z + 4

−C−1ā1
z + 4
z + 6

+ C1ā3
z + 2
z + 8

−C1ā3
z

z + 6
.

We let F(z) = z f̂−3(z + 3) = zr̂3 f−3(z) and the function G be defined as G(z) = C1ā3
z

z + 6
−C−1ā1

z + 2
z + 4

.

Then the equation above simplifies to

F(z + 2) − F(z) = G(z + 2) −G(z).

Therefore, by point (3) of Remark 2.1, a constant C−3 exists such that F(z) = C−3 + G(z). Hence we
have

r̂3 f−3(z) =
C−3

z
+ C1ā3

1
z + 6

−C−1ā1
z + 2

z(z + 4)
=

C−3

z
+ C1ā3

1
z + 6

−C−1ā1

(
1
2z

+
1

2(z + 4)

)
.

Using point (1) of Remark 2.1, we deduce that

r̂3 f−3(z) = C−3̂1(z) + C1ā3r̂6(z) −C−1ā1

(
1
2

1̂(z) +
1
2

r̂4(z)
)
.

Therefore,

f−3(r) =
C−3

r3 + C1ā3r3 −
1
2

C−1ā1

(
1
r3 + r

)
.

Clearly, f−3(r) belongs to L1([0, 1), rdr) if and only if C−3 = 0 and C−1 = 0. In this case, we have
f−1(r) = C1ā1r and f−3(r) = C1ā3r3. �
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We now proceed with the computation of f−4.

Lemma 4.6. Under the hypothesis of Theorem 3.1, we have f−4(r) = C1ā4r4.

Proof. In Eq (3.2), the term z̄n+3 arises from the following expression:(
Te−4iθ f−4Tz + T f0Tā3 z̄3 + Teiθ f1Tā4 z̄4 + Te−iθ f−1Tā2 z̄2

)
(z̄n) (4.8)

=
(
TzTe−4iθ f−4 + Tā3 z̄3T f0 + Tā4 z̄4Teiθ f1 + Tā2 z̄2Te−iθ f−1

)
(z̄n).

We use Lemma 2.1 to evaluate each term appearing in Eq (4.8), and we obtain

(1) Te−4iθ f−4Tz(z̄n) =
2n(2n + 8)

2n + 2
f̂−4(2n + 4)z̄n+3,

(2) since f0(r) = C0, T f0Tā3 z̄3(z̄n) = Tā3 z̄3T f0(z̄
n) = C0z̄n+3,

(3) Teiθ f1Tā4 z̄4(z̄n) = C1ā42(n + 4)̂r(2n + 9)z̄n+3 = C1ā4
2n + 8

2n + 10
z̄n+3,

(4) Te−iθ f−1Tā2 z̄2(z̄n) = C1ā1ā2z̄n+3,

(5) TzTe−4iθ f−4(z̄
n) = (2n + 8) f̂−4(2n + 6)z̄n+3,

(6) Tā4 z̄4Teiθ f1(z̄
n) = C1ā4

2n
2n + 2

z̄n+3.

After substituting these terms in Eq (4.8) and rearranging them, we obtain

(2n + 2) f̂−4(2n + 6) − 2n f̂−4(2n + 4) = C1ā4
2n + 2

2n + 10
−C1ā4

2n
2n + 8

.

Thus, by setting z = 2n, the equation above becomes

F(z + 2) − F(z) = G(z + 2) −G(z),

where F(z) = z f̂−4(z+4) = zr̂4 f−4(z) and G(z) = C1ā4
z

z+8 . Point (3) of Remark 2.1 implies the existence
of a constant C−4 such that F(z) = C−4 + G(z). Hence

r̂4 f−4 = C−4̂1(z) + C1ā4r̂8(z).

Therefore, we deduce that f−4(r) =
C−4

r4 + C1ā4r4. Clearly, f4 belongs to L1([0, 1), rdr) if and only if

C−4 = 0. Finally, we must have f−4(r) = C1ā4r4. �

Using the same technique as in the previous lemmas, we establish the following by induction.

Lemma 4.7. If Eqs (3.1) and (3.2) are satisfied, then for all k ≥ 1, we have f−k(r) = C1ākrk.

Proof. By Lemma 4.5, we have f−1(r) = C1ā1r, which establishes the base case. Now, assume that the
formula holds for some k ≥ 1; that is

f−k(r) = C1ākrk.

Following a similar argument as in the proof of Lemma 4.6, we obtain

f−(k+1)(r) =
C−(k+1)

rk+1 + C1āk+1rk+1.

For f−(k+1) to belong to L1([0, 1), rdr), it must satisfy C−(k+1) = 0. Thus, we conclude that

f−(k+1)(r) = C1āk+1rk+1,

which completes the induction. �
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5. Proof of the main theorem

Combining all the lemmas from the previous section, we conclude that the symbol f in Theorem 3.1
can be written as

f (reiθ) = eiθ f1(r) + f0(r) +

−1∑
k=−∞

eikθ fk(r),

which, by the results established in the lemmas, becomes

f (reiθ) = C1eiθr + C0 +

−1∑
k=−∞

e−ikθC1ākr−k.

This is equivalent to

f (z) = C1z + C0 + C1

∞∑
l=1

ālz̄l.

Using the linearity of Toeplitz operators with respect to the symbol, this implies that the Toeplitz
operator T f takes the form

T f = C1Tu + C0I,

where u is as in Theorem 3.1 and I denotes the identity operator. This completes the proof.

Final Remark. The results in this paper describe bounded Toeplitz operators with truncated symbols
that commute with Tz+ḡ, where g is an analytic function. It is worth noting that the analytic part z in
the symbol z + ḡ can be replaced by zn or, more generally, by a polynomial in z, and the same proof
techniques can still be applied. However, this generalization comes at the cost of significantly more
involved calculations, which can quickly become tedious and lengthy.

Indeed, in our main result, where the analytic polynomial is simply z, we already needed to compute
the radial components fk explicitly for k = N down to k = −4. It is natural to expect that replacing z
by a higher-degree polynomial in z would require computing even more radial components fk.

Nevertheless, we are confident that our proof strategy can be adjusted to accommodate analytic
polynomials of an arbitrary degree. In particular, we believe that the main result can be extended to
the following more general statement: If T f , as in Theorem 3.1, commutes with Tu, where u(z) =

p(z) + g(z), with p(z) being an analytic polynomial and g(z) =
∑∞

l=1 alzl being a bounded analytic
function, then T f must be a polynomial in Tu of degree at most one.
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