Research article

On some combinatorial identities related to super Catalan matrix

  • Received: 08 November 2024 Revised: 12 June 2025 Accepted: 09 July 2025 Published: 17 July 2025
  • MSC : 15A24, 11B83

  • In this paper, we define a new matrix $ S_{n} $ constructed by super Catalan numbers. Also, we give Cholesky and LU-decompositions, Hermite normal form, and the determinant of the matrix $ S_{n} $. Moreover, we derive auxiliary results involving some summation formulas via the coefficients of Lucas polynomials and scaled coefficients of Chebyshev polynomials. Additionally, we give a matrix $ \acute{S}_{n} $ by modifying the matrix $ S_{n} $ to deduce a matrix identity related to matrices $ S_{n} $ and $ \acute{S}_{n}. $ By using the decomposition method, we give an application of solving a system of linear equations of order $ n $ with coefficients $ S(m, n) $ and find a general solution.

    Citation: Serpil Halıcı, Zehra Betül Gür. On some combinatorial identities related to super Catalan matrix[J]. AIMS Mathematics, 2025, 10(7): 16139-16156. doi: 10.3934/math.2025723

    Related Papers:

  • In this paper, we define a new matrix $ S_{n} $ constructed by super Catalan numbers. Also, we give Cholesky and LU-decompositions, Hermite normal form, and the determinant of the matrix $ S_{n} $. Moreover, we derive auxiliary results involving some summation formulas via the coefficients of Lucas polynomials and scaled coefficients of Chebyshev polynomials. Additionally, we give a matrix $ \acute{S}_{n} $ by modifying the matrix $ S_{n} $ to deduce a matrix identity related to matrices $ S_{n} $ and $ \acute{S}_{n}. $ By using the decomposition method, we give an application of solving a system of linear equations of order $ n $ with coefficients $ S(m, n) $ and find a general solution.



    加载中


    [1] I. M. Gessel, Super ballot numbers, J. Symb. Comput., 14 (1992), 179–194. https://doi.org/10.1016/0747-7171(92)90034-2 doi: 10.1016/0747-7171(92)90034-2
    [2] E. A. Allen, Combinatorial interpretations of generalizations of Catalan numbers and ballot numbers, Carnegie Mellon University, 2014.
    [3] E. Georgiadis, A. Munemasa, H. Tanaka, A note on super Catalan numbers, Interdiscip. Inf. Sci., 18 (2012), 23–24. https://doi.org/10.4036/iis.2012.23 doi: 10.4036/iis.2012.23
    [4] K. Limanta, N. J. Wildberger, Super Catalan numbers and Fourier summation over finite fields, arXiv Preprint, 2021. https://doi.org/10.48550/arXiv.2108.10191
    [5] J. C. Liu, Congruences on sums of super Catalan numbers, arXiv Preprint, 2018. https://doi.org/10.48550/arXiv.1804.09485
    [6] K. von Szily, Uber die quadratsummen der binomialcoefficienten, Urgar. Ber., 12 (1893), 84–91.
    [7] H. Prodinger, The reciprocal super Catalan matrix, Spec. Matrices, 3 (2015), 111–117. https://doi.org/10.1515/spma-2015-0010 doi: 10.1515/spma-2015-0010
    [8] E. Kılıç, İ. Akkuş, G. Kızılaslan, A variant of the reciprocal super Catalan matrix, Spec. Matrices, 3 (2015), 163–168. https://doi.org/10.1515/spma-2015-0014 doi: 10.1515/spma-2015-0014
    [9] E. Özkan, İ. Altun, Generalized Lucas polynomials and relationships between the Fibonacci polynomials and Lucas polynomials, Commun. Algebra, 47 (2019), 4020–4030. https://doi.org/10.1080/00927872.2019.1576186 doi: 10.1080/00927872.2019.1576186
    [10] Z. Akyüz, S. Halıcı, On some combinatorial identities involving the terms of generalized Fibonacci and Lucas sequences, Hacet. J. Math. Stat., 4 (2013), 431–435.
    [11] J. C. Mason, D. C. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC, 2002. https://doi.org/10.1201/9781420036114
    [12] N. J. A. Sloane, The on-line Encyclopedia of integer sequences, Available from: https://oeis.org.
    [13] P. A. Damianou, On the characteristic polynomial of Cartan matrices and Chebyshev polynomials, arXiv Preprint, 2011. https://doi.org/10.48550/arXiv.1110.6620
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(512) PDF downloads(26) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog