Research article Special Issues

Metric structure for Riemann-Stieltjes derivable functions on fractals and application

  • Published: 09 July 2025
  • MSC : 28A80, 45D05, 46E15, 47H09, 47H10, 54E50

  • This article presents a metric structure of the space of all Riemann-Stieltjes derivable functions defined over a fractal subset of the real line. Within this framework, we formulate, and analyze a measure of non-compactness tailored to fractal domains. Building upon this foundation, we develop a fixed point theorem in normed linear spaces under a generalized contraction condition, thereby extending Darbo's classical results. To illustrate the applicability of our theoretical findings, we apply this framework to the analysis of a class of fractal $ \alpha $-linear differential equations, particularly focusing on models that exhibit oscillatory behaviors in fractal media settings where traditional methods often fail due to the irregularity of the domain. A numerical simulation using MATLAB supports the theoretical assertions, thus demonstrating that the noncompactness-based conditions imposed on the operator $ \mathcal{L} $ are sufficient to ensure convergence within the function space $ \mathcal{D}(\phi) $. This approach offers novel insights into solving differential equations in non-Euclidean geometries, thereby emphasizing the interplay between metric structures, the fixed point theory, and mechanical systems in complex media.

    Citation: Mohammad Sajid, Abhishikta Das, Hemanta Kalita. Metric structure for Riemann-Stieltjes derivable functions on fractals and application[J]. AIMS Mathematics, 2025, 10(7): 15737-15754. doi: 10.3934/math.2025705

    Related Papers:

  • This article presents a metric structure of the space of all Riemann-Stieltjes derivable functions defined over a fractal subset of the real line. Within this framework, we formulate, and analyze a measure of non-compactness tailored to fractal domains. Building upon this foundation, we develop a fixed point theorem in normed linear spaces under a generalized contraction condition, thereby extending Darbo's classical results. To illustrate the applicability of our theoretical findings, we apply this framework to the analysis of a class of fractal $ \alpha $-linear differential equations, particularly focusing on models that exhibit oscillatory behaviors in fractal media settings where traditional methods often fail due to the irregularity of the domain. A numerical simulation using MATLAB supports the theoretical assertions, thus demonstrating that the noncompactness-based conditions imposed on the operator $ \mathcal{L} $ are sufficient to ensure convergence within the function space $ \mathcal{D}(\phi) $. This approach offers novel insights into solving differential equations in non-Euclidean geometries, thereby emphasizing the interplay between metric structures, the fixed point theory, and mechanical systems in complex media.



    加载中


    [1] B. B. Mandelbrot, The fractal geometry of nature, W. H. Freeman and Company, 1977.
    [2] K. Falconer, Fractal geometry: Mathematical foundations and applications, Wiley, 2003. https://doi.org/10.1002/0470013850
    [3] G. A. Edgar, Integral, probability and fractal measures, New York: Springer, 1998. https://doi.org/10.1007/978-1-4757-2958-0
    [4] A. K. Golmankhaneh, Fractal calculus and its applications: $F^\alpha$-Calculus, World Scientific, 2022. https://doi.org/10.1142/12988
    [5] S. E. Satin, A. Parvate, A. D. Gangal, Fokker–Planck equation on fractal curves, Chaos Soliton Fract., 52 (2013), 30–35. https://doi.org/10.1016/j.chaos.2013.03.013 doi: 10.1016/j.chaos.2013.03.013
    [6] A. Parvate, A. D. Gangal, Calculus on fractal subsets of real line-I: Formulation, Fractals, 17 (2009), 53–81. https://doi.org/10.1142/S0218348X09004181 doi: 10.1142/S0218348X09004181
    [7] A. Parvate, A. D. Gangal, Calculus on fractal subsets of real line-II: Conjugacy with ordinary calculus, Fractals, 19 (2011), 271–290. https://doi.org/10.1142/S0218348X11005440 doi: 10.1142/S0218348X11005440
    [8] A. K. Golmankhaneh, R. E. Castillo, A. I. Zayed, P. E. T. Jørgensen, Fractal Riemann-Stieltjes calculus, 2024, 1–12.
    [9] Y. Kao, Y. Li, J. H. Park, X. Chen, Mittag–Leffler synchronization of delayed fractional memristor neural networks via adaptive control, IEEE Trans. Neural Netw. Learn. Syst., 32 (2021), 2279–2284. https://doi.org/10.1109/TNNLS.2020.2995718 doi: 10.1109/TNNLS.2020.2995718
    [10] F. Wang, W. Chen, C. Zhang, Q. Hua, Kansa method based on the Hausdorff fractal distance for Hausdorff derivative Poisson equations, Fractals, 26 (2018), 1850084. https://doi.org/10.1142/S0218348X18500846 doi: 10.1142/S0218348X18500846
    [11] Y. Kao, C. Wang, H. Xia, Y. Cao, Projective synchronization for uncertain fractional reaction-diffusion systems via adaptive sliding mode control based on finite-time scheme, In: Analysis and control for fractional-order systems, Singapore: Springer, 2024,141–163. https://doi.org/10.1007/978-981-99-6054-5_8
    [12] W. Chen, F. Wang, B. Zheng, W. Cai, Non-Euclidean distance fundamental solution of Hausdorff derivative partial differential equations, Eng. Anal. Bound. Elem., 84 (2017), 213–219. https://doi.org/10.1016/j.enganabound.2017.09.003 doi: 10.1016/j.enganabound.2017.09.003
    [13] P. K. Kythe, Fundamental solutions for differential operators and applications, New York: Springer, 1996. https://doi.org/10.1007/978-1-4612-4106-5
    [14] R. E. Castillo, S. A. Chapinz, The fundamental theorem of calculus for the Riemann-Stieltjes integral, Lect. Mat., 29 (2008), 115–122.
    [15] C. Kuratowski, Sur les espaces complets, Fundam. Math., 15 (1930), 301–309.
    [16] G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rendiconti del Seminario Matematico della Università di Padova, 24 (1955), 84–92.
    [17] J. Schauder, Der fixpunktsatz in funktionalraümen, Stud. Math., 2 (1930), 171–180. https://doi.org/10.4064/sm-2-1-171-180 doi: 10.4064/sm-2-1-171-180
    [18] V. Parvaneh, M. Khorshidi, M. De La Sen, H. Işık, M. Mursaleen, Measure of noncompactness and a generalized Darbo's fixed point theorem and its applications to a system of integral equations, Adv. Differ. Equ., 2020 (2020), 243. https://doi.org/10.1186/s13662-020-02703-z doi: 10.1186/s13662-020-02703-z
    [19] H. A. Hammad, H. Aydi, M. De la Sen, Solving nonlinear fractional equations and some related integral equations under a measure of noncompactness, Comput. Appl. Math., 44 (2025), 126. https://doi.org/10.1007/s40314-025-03084-3 doi: 10.1007/s40314-025-03084-3
    [20] G. Feng, J. Niu, An analytical solution of the fractal toda oscillator, Results Phys., 44 (2023), 106208. https://doi.org/10.1016/j.rinp.2023.106208 doi: 10.1016/j.rinp.2023.106208
    [21] D. Tian, C. H. He, J. H. He, Fractal pull-in stability theory for micro electromechanical systems, Front. Phys., 9 (2021), 606011. https://doi.org/10.3389/fphy.2021.606011 doi: 10.3389/fphy.2021.606011
    [22] K. J. Wang, J. H. Liu, Periodic solution of the time space fractional Sasa-Satsuma equation in the monomode optical fibers by the energy balance theory, Europhys. Lett., 138 (2022), 25002. https://doi.org/10.1209/0295-5075/ac5c78 doi: 10.1209/0295-5075/ac5c78
    [23] M. N. Mukherjee, Elements of metric space, {Academic Publishers, 2016}.
    [24] M. Tajine, C. Ronse, Topological properties of Hausdorff discretization, and comparison to other discretization schemes, Theor. Comput. Sci., 283 (2002), 243–268. https://doi.org/10.1016/S0304-3975(01)00082-2 doi: 10.1016/S0304-3975(01)00082-2
    [25] V. Rakocévić, Measure of noncompactness and some applications, Filomat, 12 (1998), 87–120.
    [26] A. K. Golmankhaneh, C. Cattani, D. T. Pham, M. Abdel-Aty, Fractal integral equations, J. Nonlinear Funct. Anal., 2024 (2024), 22. https://doi.org/10.23952/jnfa.2024.22 doi: 10.23952/jnfa.2024.22
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(567) PDF downloads(44) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog