Let $ G $ be a connected graph of order $ n $ with $ n\geq25 $. A $ \{P_3, P_4, P_5\} $-factor is a spanning subgraph $ H $ of $ G $ such that every component of $ H $ is isomorphic to an element of $ \{P_3, P_4, P_5\} $. Nikiforov introduced the $ A_{\alpha} $-matrix of $ G $ as $ A_{\alpha}(G) = \alpha D(G)+(1-\alpha)A(G) $ [V. Nikiforov, Merging the $ A $- and $ Q $-spectral theories, Appl. Anal. Discrete Math., 11 (2017), 81–107], where $ \alpha\in[0, 1] $, $ D(G) $ denotes the diagonal matrix of vertex degrees of $ G $ and $ A(G) $ denotes the adjacency matrix of $ G $. The largest eigenvalue of $ A_{\alpha}(G) $, denoted by $ \lambda_{\alpha}(G) $, is called the $ A_{\alpha} $-spectral radius of $ G $. In this paper, it is proved that $ G $ has a $ \{P_3, P_4, P_5\} $-factor unless $ G = K_1\vee(K_{n-2}\cup K_1) $ if $ \lambda_{\alpha}(G)\geq\lambda_{\alpha}(K_1\vee(K_{n-2}\cup K_1)) $, where $ \alpha $ is a real number with $ 0\leq\alpha < \frac{2}{3} $.
Citation: Yuli Zhang, Sizhong Zhou. An $ A_{\alpha} $-spectral radius for the existence of $ \{P_3, P_4, P_5\} $-factors in graphs[J]. AIMS Mathematics, 2025, 10(7): 15497-15511. doi: 10.3934/math.2025695
Let $ G $ be a connected graph of order $ n $ with $ n\geq25 $. A $ \{P_3, P_4, P_5\} $-factor is a spanning subgraph $ H $ of $ G $ such that every component of $ H $ is isomorphic to an element of $ \{P_3, P_4, P_5\} $. Nikiforov introduced the $ A_{\alpha} $-matrix of $ G $ as $ A_{\alpha}(G) = \alpha D(G)+(1-\alpha)A(G) $ [V. Nikiforov, Merging the $ A $- and $ Q $-spectral theories, Appl. Anal. Discrete Math., 11 (2017), 81–107], where $ \alpha\in[0, 1] $, $ D(G) $ denotes the diagonal matrix of vertex degrees of $ G $ and $ A(G) $ denotes the adjacency matrix of $ G $. The largest eigenvalue of $ A_{\alpha}(G) $, denoted by $ \lambda_{\alpha}(G) $, is called the $ A_{\alpha} $-spectral radius of $ G $. In this paper, it is proved that $ G $ has a $ \{P_3, P_4, P_5\} $-factor unless $ G = K_1\vee(K_{n-2}\cup K_1) $ if $ \lambda_{\alpha}(G)\geq\lambda_{\alpha}(K_1\vee(K_{n-2}\cup K_1)) $, where $ \alpha $ is a real number with $ 0\leq\alpha < \frac{2}{3} $.
| [1] |
M. Kano, H. Lu, Q. Yu, Component factors with large components in graphs, Appl. Math. Lett., 23 (2010), 385–389. http://dx.doi.org/10.1016/j.aml.2009.11.003 doi: 10.1016/j.aml.2009.11.003
|
| [2] | J. Akiyama, D. Avis, H. Era, On a $\{1, 2\}$-factor of a graph, TRU Math., 16 (1980), 97–102. |
| [3] |
A. Kaneko, A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two, J. Comb. Theory B, 88 (2003), 195–218. http://dx.doi.org/10.1016/S0095-8956(03)00027-3 doi: 10.1016/S0095-8956(03)00027-3
|
| [4] |
H. Liu, X. Pan, Independence number and minimum degree for path-factor critical uniform graphs, Discrete Appl. Math., 359 (2024), 153–158. http://dx.doi.org/10.1016/j.dam.2024.07.043 doi: 10.1016/j.dam.2024.07.043
|
| [5] |
W. Gao, W. Wang, Y. Chen, Tight bounds for the existence of path factors in network vulnerability parameter settings, Int. J. Intell. Syst., 36 (2021), 1133–1158. http://dx.doi.org/10.1002/int.22335 doi: 10.1002/int.22335
|
| [6] |
G. Dai, Z. Hu, $P_3$-factors in the square of a tree, Graph. Combinator., 36 (2020), 1913–1925. http://dx.doi.org/10.1007/s00373-020-02184-7 doi: 10.1007/s00373-020-02184-7
|
| [7] |
W. Tutte, The 1-factors of oriented graphs, P. Am. Math. Soc., 4 (1953), 922–931. http://dx.doi.org/10.2307/2031831 doi: 10.2307/2031831
|
| [8] |
A. Klopp, E. Steffen, Fractional matchings, component-factors and edge-chromatic critical graphs, Graph. Combinator., 37 (2021), 559–580. http://dx.doi.org/10.1007/s00373-020-02266-6 doi: 10.1007/s00373-020-02266-6
|
| [9] | A. Amahashi, M. Kano, On factors with given components, Discrete Math., 42 (1982), 1–6. |
| [10] |
M. Kano, A. Saito, Star-factors with large components, Discrete Math., 312 (2012), 2005–2008. http://dx.doi.org/10.1016/j.disc.2012.03.017 doi: 10.1016/j.disc.2012.03.017
|
| [11] |
W. Gao, Y. Wang, W. Wang, A sufficient condition for a graph to be fractional $(k, n)$-critical, Discrete Math., 347 (2024), 114008. http://dx.doi.org/10.1016/j.disc.2024.114008 doi: 10.1016/j.disc.2024.114008
|
| [12] |
J. Wu, A sufficient condition for the existence of fractional $(g, f, n)$-critical covered graphs, Filomat, 38 (2024), 2177–2183. http://dx.doi.org/10.2298/FIL2406177W doi: 10.2298/FIL2406177W
|
| [13] |
S. Zhou, J. Wu, A spectral condition for the existence of component factors in graphs, Discrete Appl. Math., 376 (2025), 141–150. http://dx.doi.org/10.1016/j.dam.2025.06.017 doi: 10.1016/j.dam.2025.06.017
|
| [14] |
V. Nikiforov, Merging the $A$- and $Q$-spectral theories, Appl. Anal. Discr. Math., 11 (2017), 81–107. http://dx.doi.org/10.2298/AADM1701081N doi: 10.2298/AADM1701081N
|
| [15] |
V. Nikiforov, O. Rojo, A note on the positive semidefiniteness of $A_{\alpha}(G)$, Linear Algebra Appl., 519 (2017), 156–163. http://dx.doi.org/10.1016/j.laa.2016.12.042 doi: 10.1016/j.laa.2016.12.042
|
| [16] |
S. Wang, W. Zhang, An $A_{\alpha}$-spectral radius for a spanning tree with constrained leaf distance in a graph, Filomat, 39 (2025), 639–648. http://dx.doi.org/10.2298/FIL2502639W doi: 10.2298/FIL2502639W
|
| [17] |
J. Wu, Characterizing spanning trees via the size or the spectral radius of graphs, Aequationes Math., 98 (2024), 1441–1455. http://dx.doi.org/10.1007/s00010-024-01112-x doi: 10.1007/s00010-024-01112-x
|
| [18] | R. Bapat, Linear algebra and linear models, 2 Eds., New Delhi: Hindustan Book Agency, 2000. |
| [19] | J. Bondy, U. Murty, Graph theory, New York: Springer, 244 (2008). |
| [20] |
S. O, Spectral radius and matchings in graphs, Linear Algebra Appl., 614 (2021), 316–324. http://dx.doi.org/10.1016/j.laa.2020.06.004 doi: 10.1016/j.laa.2020.06.004
|
| [21] |
Y. Zhao, X. Huang, Z. Wang, The $A_{\alpha}$-spectral radius and perfect matchings of graphs, Linear Algebra Appl., 631 (2021), 143–155. http://dx.doi.org/10.1016/j.laa.2021.08.028 doi: 10.1016/j.laa.2021.08.028
|
| [22] |
S. Zhou, Z. Sun, Y. Zhang, Spectral radius and $k$-factor-critical graphs, J. Supercomput., 81 (2025), 456. http://dx.doi.org/10.1007/s11227-024-06902-3 doi: 10.1007/s11227-024-06902-3
|
| [23] |
S. Li, S. Miao, Characterizing $P_{\geq2}$-factor and $P_{\geq2}$-factor covered graphs with respect to the size or the spectral radius, Discrete Math., 344 (2021), 112588. http://dx.doi.org/10.1016/j.disc.2021.112588 doi: 10.1016/j.disc.2021.112588
|
| [24] |
S. Zhou, Some spectral conditions for star-factors in bipartite graphs, Discrete Appl. Math., 369 (2025), 124–130. http://dx.doi.org/10.1016/j.dam.2025.03.014 doi: 10.1016/j.dam.2025.03.014
|
| [25] |
S. Miao, S. Li, Characterizing star factors via the size, the spectral radius or the distance spectral radius of graphs, Discrete Appl. Math., 326 (2023), 17–32. http://dx.doi.org/10.1016/j.dam.2022.11.006 doi: 10.1016/j.dam.2022.11.006
|
| [26] |
X. Lv, J. Li, S. Xu, Some results on $\{K_{2}, C_{2i+1}: i \geq 1\}$-factor in a graph, Discrete Appl. Math., 360 (2025), 81–92. http://dx.doi.org/10.1016/j.dam.2024.08.021 doi: 10.1016/j.dam.2024.08.021
|
| [27] |
X. Lv, J. Li, S. Xu, The $A_{\alpha}$-spectral radius for $\{P_{2}, C_{3}, P_{5}, \mathcal{T}(3)\}$-factors in graphs, Comput. Appl. Math., 44 (2025), 263. http://dx.doi.org/10.1007/s40314-025-03214-x doi: 10.1007/s40314-025-03214-x
|
| [28] |
L. You, M. Yang, W. So, W. Xi, On the spectrum of an equitable quotient matrix and its application, Linear Algebra Appl., 577 (2019), 21–40. http://dx.doi.org/10.1016/j.laa.2019.04.013 doi: 10.1016/j.laa.2019.04.013
|
| [29] |
W. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl., 226–228 (1995), 593–616. http://dx.doi.org/10.1016/0024-3795(95)00199-2 doi: 10.1016/0024-3795(95)00199-2
|