Research article

A general definition of the fractal derivative: Theory and applications

  • Published: 03 July 2025
  • MSC : 26A33

  • In this paper, we introduce a general definition of the fractal derivative with respect to a function $ \psi $, in the context of the order $ 0 < \alpha\leq 1 $ and the function $ \psi(\Theta) $. This novel definition generalizes the classical fractal derivative, which is recovered when $ \psi(\Theta) = \Theta $, as described in previous works by Chen et al. [1,2]. We explored key properties of the $ \psi $-fractal derivative, including the $ \psi $-fractal Laplace transform, which provides a powerful tool for solving complex differential equations in fractal domains. We also derived a generalized $ \psi $-chain rule, extending classical calculus into the fractal domain, and presented fundamental operations related to this unique derivative. We give some applications.

    Citation: Lakhlifa Sadek, Ahmad Sami Bataineh, El Mostafa Sadek, Ishak Hashim. A general definition of the fractal derivative: Theory and applications[J]. AIMS Mathematics, 2025, 10(7): 15390-15409. doi: 10.3934/math.2025690

    Related Papers:

  • In this paper, we introduce a general definition of the fractal derivative with respect to a function $ \psi $, in the context of the order $ 0 < \alpha\leq 1 $ and the function $ \psi(\Theta) $. This novel definition generalizes the classical fractal derivative, which is recovered when $ \psi(\Theta) = \Theta $, as described in previous works by Chen et al. [1,2]. We explored key properties of the $ \psi $-fractal derivative, including the $ \psi $-fractal Laplace transform, which provides a powerful tool for solving complex differential equations in fractal domains. We also derived a generalized $ \psi $-chain rule, extending classical calculus into the fractal domain, and presented fundamental operations related to this unique derivative. We give some applications.



    加载中


    [1] W. Chen, Time-space fabric underlying anomalous diffusion, Chaos Soliton Fract., 28 (2006), 923–929. https://doi.org/10.1016/j.chaos.2005.08.199 doi: 10.1016/j.chaos.2005.08.199
    [2] W. Chen, H. Sun, X. Zhang, D. Korošak, Anomalous diffusion modeling by fractal and fractional derivatives, Comput. Math. Appl., 59 (2010), 1754–1758. https://doi.org/10.1016/j.camwa.2009.08.020 doi: 10.1016/j.camwa.2009.08.020
    [3] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 2003 (2003), 753601. https://doi.org/10.1155/S0161171203301486 doi: 10.1155/S0161171203301486
    [4] F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative, Chaos Soliton Fract., 117 (2018), 16–20. https://doi.org/10.1016/j.chaos.2018.10.006 doi: 10.1016/j.chaos.2018.10.006
    [5] A. Akgül, Some fractional derivatives with different kernels, Int. J. Appl. Comput. Math., 8 (2022), 183. https://doi.org/10.1007/s40819-022-01389-z doi: 10.1007/s40819-022-01389-z
    [6] L. Sadek, A. Akgül, A. S. Bataineh, I. Hashim, A cotangent fractional Gronwall inequality with applications, AIMS Mathematics, 9 (2024), 7819–7833. https://doi.org/10.3934/math.2024380 doi: 10.3934/math.2024380
    [7] P. Pandey, J. F. Gómez-Aguilar, M. K. A. Kaabar, Z. Siri, A. A. A. Mousa, Mathematical modeling of COVID-19 pandemic in India using Caputo-Fabrizio fractional derivative, Comput. Biol. Med., 145 (2022), 105518. https://doi.org/10.1016/j.compbiomed.2022.105518 doi: 10.1016/j.compbiomed.2022.105518
    [8] F. Evirgen, Transmission of Nipah virus dynamics under Caputo fractional derivative, J. Comput. Appl. Math., 418 (2023), 114654. https://doi.org/10.1016/j.cam.2022.114654 doi: 10.1016/j.cam.2022.114654
    [9] O. Sadek, L. Sadek, S. Touhtouh, A. Hajjaji, The mathematical fractional modeling of $TiO_{2}$ nanopowder synthesis by sol–gel method at low temperature, Math. Model. Comput., 9 (2022), 616–626. https://doi.org/10.23939/mmc2022.03.616 doi: 10.23939/mmc2022.03.616
    [10] P. Kumar, V. Govindaraj, V. S. Erturk, M. H. Abdellattif, A study on the dynamics of alkali–silica chemical reaction by using Caputo fractional derivative, Pramana, 96 (2022), 128. https://doi.org/10.1007/s12043-022-02359-2 doi: 10.1007/s12043-022-02359-2
    [11] O. T. Kolebaje, O. R. Vincent, U. E. Vincent, P. V. McClintock, Nonlinear growth and mathematical modelling of COVID-19 in some African countries with the Atangana–Baleanu fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 105 (2022), 106076. https://doi.org/10.1016/j.cnsns.2021.106076 doi: 10.1016/j.cnsns.2021.106076
    [12] L. Sadek, Fractional BDF methods for solving fractional differential matrix equations, Int. J. Appl. Comput. Math., 8 (2022), 238. https://doi.org/10.1007/s40819-022-01455-6 doi: 10.1007/s40819-022-01455-6
    [13] D. Kasinathan, D. Chalishajar, R. Kasinathan, R. Kasinathan, S. Karthikeyan, Trajectory controllability of higher-order fractional neutral stochastic system with non-instantaneous impulses via state-dependent delay with numerical simulation followed by hearth wall degradation process, Int. J. Dynam. Control, 13 (2025), 104. https://doi.org/10.1007/s40435-025-01605-w doi: 10.1007/s40435-025-01605-w
    [14] L. Sadek, Controllability and observability for fractal linear dynamical systems, J. Vib. Control, 29 (2023), 4730–4740. https://doi.org/10.1177/10775463221123354 doi: 10.1177/10775463221123354
    [15] N. Nie, J. Jiang, Y. Feng, Parameter estimation for a class of fractional stochastic SIRD models with random perturbations, Fund. J. Math. Appl., 6 (2023), 101–106. https://doi.org/10.33401/fujma.1212268 doi: 10.33401/fujma.1212268
    [16] F. Usta, H. Budak, M. Z. Sarikaya, Yang-Laplace transform method Volterra and Abel's integro-differential equations of fractional order, Int. J. Nonlinear Anal. Appl., 9 (2018), 203–214. https://doi.org/10.22075/ijnaa.2018.13630.1709 doi: 10.22075/ijnaa.2018.13630.1709
    [17] D. Chalishajar, D. Kasinathan, R. Kasinathan, R. Kasinathan, Viscoelastic Kelvin–Voigt model on Ulam–Hyer's stability and T-controllability for a coupled integro fractional stochastic systems with integral boundary conditions via integral contractors, Chaos Soliton Fract., 191 (2025), 115785. https://doi.org/10.1016/j.chaos.2024.115785 doi: 10.1016/j.chaos.2024.115785
    [18] R. Kasinathan, R. Kasinathan, D. Chalishajar, D. Kasinathan, Various controllability results for Fredholm-Volterra type stochastic elastic damped integro-differential systems with applications, Int. J. Dynam. Control, 13 (2025), 117. https://doi.org/10.1007/s40435-025-01618-5 doi: 10.1007/s40435-025-01618-5
    [19] A. Kurt, O. Tasbozan, H. Durur, The exact solutions of conformable fractional partial differential equations using new sub equation method, Fund. J. Math. Appl., 2 (2019), 173–179. https://doi.org/10.33401/fujma.562819 doi: 10.33401/fujma.562819
    [20] K. Mpungu, A. M. Nass, On complete group classification of time fractional systems evolution differential equation with a constant delay, Fund. J. Math. Appl., 6 (2023), 12–23. https://doi.org/10.33401/fujma.1147657 doi: 10.33401/fujma.1147657
    [21] G. Iskenderoglu, D. Kaya, Symmetry analysis and conservation laws of the boundary value problems for time-fractional generalized Burgers' differential equation, Fund. J. Math. Appl., 2 (2019), 139–147. https://doi.org/10.33401/fujma.598107 doi: 10.33401/fujma.598107
    [22] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [23] L. Sadek, S. A. Idris, F. Jarad, The general Caputo–Katugampola fractional derivative and numerical approach for solving the fractional differential equations, Alex. Eng. J., 121 (2025), 539–557. https://doi.org/10.1016/j.aej.2025.02.065 doi: 10.1016/j.aej.2025.02.065
    [24] L. Sadek, D. Baleanu, M. S. Abdo, W. Shatanawi, Introducing novel $\Theta$-fractional operators: Advances in fractional calculus, J. King Saud Univ. Sci., 36 (2024), 103352. https://doi.org/10.1016/j.jksus.2024.103352 doi: 10.1016/j.jksus.2024.103352
    [25] L. Sadek, Controllability, observability, and stability of $\phi$‐conformable fractional linear dynamical systems, Asian J. Control, 26 (2024), 2476–2494. https://doi.org/10.1002/asjc.3348 doi: 10.1002/asjc.3348
    [26] F. Jarad, T. Abdeljawad, K. Shah, On the weighted fractional operators of a function with respect to another function, Fractals, 28 (2020), 2040011. https://doi.org/10.1142/S0218348X20400113 doi: 10.1142/S0218348X20400113
    [27] F. Jarad, M. A. Alqudah, T. Abdeljawad, On more general forms of proportional fractional operators, Open Math., 18 (2020), 167–176. https://doi.org/10.1515/math-2020-0014 doi: 10.1515/math-2020-0014
    [28] Y. Liang, N. Su, W. Chen, A time-space Hausdorff derivative model for anomalous transport in porous media, Fract. Calc. Appl. Anal., 22 (2019), 1517–1536. https://doi.org/10.1515/fca-2019-0079 doi: 10.1515/fca-2019-0079
    [29] Y. Wang, Q. Deng, Fractal derivative model for tsunami traveling, Fractals, 27 (2019), 1950017. https://doi.org/10.1142/S0218348X19500178 doi: 10.1142/S0218348X19500178
    [30] J. H. He, Fractal calculus and its geometrical explanation, Results Phys., 10 (2018), 272–276. https://doi.org/10.1016/j.rinp.2018.06.011 doi: 10.1016/j.rinp.2018.06.011
    [31] W. Chen, Y. Liang, New methodologies in fractional and fractal derivatives modeling, Chaos Soliton Fract., 102 (2017), 72–77. https://doi.org/10.1016/j.chaos.2017.03.066 doi: 10.1016/j.chaos.2017.03.066
    [32] K. L. Wang, S. W. Yao, Y. P. Liu, L. N. Zhang, A fractal variational principle for the telegraph equation with fractal derivatives, Fractals, 28 (2020), 2050058. https://doi.org/10.1142/S0218348X20500589 doi: 10.1142/S0218348X20500589
    [33] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Cont. Dyn. Syst. S, 13 (2020), 709–722. https://doi.org/10.3934/dcdss.2020039 doi: 10.3934/dcdss.2020039
    [34] D. Chalishajar, K. Ramkumar, K. Ravikumar, A. Anguraj, S. Jain, Optimal control of conformable fractional neutral stochastic integrodifferential systems with infinite delay, Results Control Optim., 13 (2023), 100293. https://doi.org/10.1016/j.rico.2023.100293 doi: 10.1016/j.rico.2023.100293
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(901) PDF downloads(80) Cited by(2)

Article outline

Figures and Tables

Figures(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog