This study introduces the t-arbicular fuzzy (t-AF) set, an extension of the t-spherical fuzzy set, to enhance decision-making in complex environments. The research focuses on the theoretical foundation of the t-AF set, encompassing the development of algebraic operations and comparison rules. In addition, we propose novel aggregation operators (AOs), including the t-AF weighted average (t-AFWA) and t-AF weighted geometric (t-AFWG) operators. Key properties such as idempotency, monotonicity, and boundedness of these operators are thoroughly examined. Furthermore, distance measures are formulated alongside their essential characteristics and special cases. To address multi-criteria group decision-making (MCGDM) problems under t-AF environment with unknown weight information, the tomada de decisao interativa multicriterio (TODIM) method is integrated with the criteria importance through an intercriteria correlation (CRITIC) approach. Finally, the proposed methodologies are validated through a case study on selecting the optimal gate security system, demonstrating their effectiveness and applicability in real-world scenarios.
Citation: Jawad Ali, Ioan-Lucian Popa. TODIM method with unknown weights under t-arbicular fuzzy environment for optimal gate security system selection[J]. AIMS Mathematics, 2025, 10(6): 13941-13973. doi: 10.3934/math.2025627
This study introduces the t-arbicular fuzzy (t-AF) set, an extension of the t-spherical fuzzy set, to enhance decision-making in complex environments. The research focuses on the theoretical foundation of the t-AF set, encompassing the development of algebraic operations and comparison rules. In addition, we propose novel aggregation operators (AOs), including the t-AF weighted average (t-AFWA) and t-AF weighted geometric (t-AFWG) operators. Key properties such as idempotency, monotonicity, and boundedness of these operators are thoroughly examined. Furthermore, distance measures are formulated alongside their essential characteristics and special cases. To address multi-criteria group decision-making (MCGDM) problems under t-AF environment with unknown weight information, the tomada de decisao interativa multicriterio (TODIM) method is integrated with the criteria importance through an intercriteria correlation (CRITIC) approach. Finally, the proposed methodologies are validated through a case study on selecting the optimal gate security system, demonstrating their effectiveness and applicability in real-world scenarios.
| [1] |
G. Tang, X. Gu, F. Chiclana, P. Liu, K. Yin, A multi-objective q-rung orthopair fuzzy programming approach to heterogeneous group decision making, Inf. Sci., 645 (2023), 119343. https://doi.org/10.1016/j.ins.2023.119343 doi: 10.1016/j.ins.2023.119343
|
| [2] |
S. Moslem, Evaluating commuters' travel mode choice using the Z-number extension of parsimonious best worst method, Appl. Soft Comput., 173 (2025), 112918. https://doi.org/10.1016/j.asoc.2025.112918 doi: 10.1016/j.asoc.2025.112918
|
| [3] |
G. Demir, Fuzzy multi-criteria decision-making based security management: Risk assessment and countermeasure selection in smart cities, Knowl. Decis. Syst. Appl., 1 (2025), 70–91. https://doi.org/10.59543/kadsa.v1i.13701 doi: 10.59543/kadsa.v1i.13701
|
| [4] |
J. Ali, D. Pamucar, Normal wiggly probabilistic hesitant fuzzy-based TODIM approach for optimal solid waste disposal method selection, Heliyon, 11 (2025), e41908. https://doi.org/10.1016/j.heliyon.2025.e41908 doi: 10.1016/j.heliyon.2025.e41908
|
| [5] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
| [6] | K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 |
| [7] | B. C. Cuong, V. Kreinovich, Picture fuzzy sets—a new concept for computational intelligence problems, In: 2013 Third World Congress on Information and Communication Technologies (WICT 2013), Hanoi, Vietnam, 2013, 1–6. https://doi.org/10.1109/WICT.2013.7113099 |
| [8] | B. Cuong, Picture fuzzy sets—first results, part 2, seminar, neuro-fuzzy systems with applications, Inst. Math. Hanoi, 2013. |
| [9] |
S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani, T. Mahmood, Spherical fuzzy sets and their applications in multi-attribute decision-making problems, J. Intell. Fuzzy Syst., 36 (2019), 2829–2844. https://doi.org/10.3233/JIFS-172009 doi: 10.3233/JIFS-172009
|
| [10] |
F. K. Gündoğdu, C. Kahraman, Spherical fuzzy sets and spherical fuzzy TOPSIS method, J. Intell. Fuzzy Syst., 36 (2019), 337–352. https://doi.org/10.3233/JIFS-181401 doi: 10.3233/JIFS-181401
|
| [11] |
T. Mahmood, K. Ullah, Q. Khan, N. Jan, An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets, Neural Comput. Appl., 31 (2019), 7041–7053. https://doi.org/10.1007/s00521-018-3521-2 doi: 10.1007/s00521-018-3521-2
|
| [12] |
M. Munir, H. Kalsoom, K. Ullah, T. Mahmood, Y. M. Chu, T-spherical fuzzy Einstein hybrid aggregation operators and their applications in multi-attribute decision-making problems, Symmetry, 12 (2020), 365. https://doi.org/10.3390/sym12030365 doi: 10.3390/sym12030365
|
| [13] |
S. Zeng, M. Munir, T. Mahmood, M. Naeem, Some T-spherical fuzzy Einstein interactive aggregation operators and their application to selection of photovoltaic cells, Math. Probl. Eng., 2020 (2020), 1904362. https://doi.org/10.1155/2020/1904362 doi: 10.1155/2020/1904362
|
| [14] |
P. Liu, Q. Khan, T. Mahmood, N. Hassan, T-spherical fuzzy power Muirhead mean operator based on novel operational laws and their application in multi-attribute group decision-making, IEEE Access, 7 (2019), 22613–22632. https://doi.org/10.1109/ACCESS.2019.2896107 doi: 10.1109/ACCESS.2019.2896107
|
| [15] |
K. Ullah, T. Mahmood, H. Garg, Evaluation of the performance of search and rescue robots using T-spherical fuzzy Hamacher aggregation operators, Int. J. Fuzzy Syst., 22 (2020), 570–582. https://doi.org/10.1007/s40815-020-00803-2 doi: 10.1007/s40815-020-00803-2
|
| [16] |
Q. Khan, J. Gwak, M. Shahzad, M. K. Alam, A novel approach based on T-spherical fuzzy Schweizer-Sklar power Heronian mean operator for evaluating water reuse applications under uncertainty, Sustainability, 13 (2021), 7108. https://doi.org/10.3390/su13137108 doi: 10.3390/su13137108
|
| [17] |
S. Mahnaz, J. Ali, M. A. Malik, Z. Bashir, T-spherical fuzzy Frank aggregation operators and their application to decision-making with unknown weight information, IEEE Access, 10 (2021), 7408–7438. https://doi.org/10.1109/ACCESS.2021.3129807 doi: 10.1109/ACCESS.2021.3129807
|
| [18] |
Y. Ju, Y. Liang, C. Luo, P. Dong, E. D. S. Gonzalez, A. Wang, T-spherical fuzzy TODIM method for multi-criteria group decision-making problem with incomplete weight information, Soft Comput., 25 (2021), 2981–3001. https://doi.org/10.1007/s00500-020-05357-x doi: 10.1007/s00500-020-05357-x
|
| [19] |
T. Mahmood, M. S. Warraich, Z. Ali, D. Pamucar, Generalized MULTIMOORA method and Dombi prioritized weighted aggregation operators based on T-spherical fuzzy sets and their applications, Int. J. Intell. Syst., 36 (2021), 4659–4692. https://doi.org/10.1002/int.22474 doi: 10.1002/int.22474
|
| [20] |
M. Munir, T. Mahmood, A. Hussain, Algorithm for T-spherical fuzzy MADM based on associated immediate probability interactive geometric aggregation operators, Artif. Intell. Rev., 54 (2021), 6033–6061. https://doi.org/10.1007/s10462-021-09959-1 doi: 10.1007/s10462-021-09959-1
|
| [21] |
M. Javed, S. Javeed, K. Ullah, H. Garg, D. Pamucar, Y. Elmasry, Approach to multi-attribute decision-making problems based on neutrality aggregation operators of T-spherical fuzzy information, Comput. Appl. Math., 41 (2022), 310. https://doi.org/10.1007/s40314-022-01985-1 doi: 10.1007/s40314-022-01985-1
|
| [22] |
A. Hussain, K. Ullah, An intelligent decision support system for spherical fuzzy Sugeno-Weber aggregation operators and real-life applications, Spectr. Mech. Eng. Oper. Res., 1 (2024), 177–188. https://doi.org/10.31181/smeor11202415 doi: 10.31181/smeor11202415
|
| [23] |
J. Ali, Analysis and application of r, s, t-spherical fuzzy Aczel-Alsina aggregation operators in multiple criteria decision-making, Granular Comput., 9 (2024), 17. https://doi.org/10.1007/s41066-023-00432-8 doi: 10.1007/s41066-023-00432-8
|
| [24] |
U. Mandal, M. R. Seikh, Interval-valued spherical fuzzy MABAC method based on Dombi aggregation operators with unknown attribute weights to select plastic waste management process, Appl. Soft Comput., 145 (2023), 110516. https://doi.org/10.1016/j.asoc.2023.110516 doi: 10.1016/j.asoc.2023.110516
|
| [25] |
S. Moslem, A novel parsimonious spherical fuzzy analytic hierarchy process for sustainable urban transport solutions, Eng. Appl. Artif. Intel., 128 (2024), 107447. https://doi.org/10.1016/j.engappai.2023.107447 doi: 10.1016/j.engappai.2023.107447
|
| [26] |
E. Farrokhizadeh, S. A. S. Shishavan, F. K. Gündoğdu, Y. Donyatalab, C. Kahraman, S. H. Seifi, A spherical fuzzy methodology integrating maximizing deviation and TOPSIS methods, Eng. Appl. Artif. Intel., 101 (2021), 104212. https://doi.org/10.1016/j.engappai.2021.104212 doi: 10.1016/j.engappai.2021.104212
|
| [27] |
K. Ullah, N. Hassan, T. Mahmood, N. Jan, M. Hassan, Evaluation of investment policy based on multi-attribute decision-making using interval-valued T-spherical fuzzy aggregation operators, Symmetry, 11 (2019), 357. https://doi.org/10.3390/sym11030357 doi: 10.3390/sym11030357
|
| [28] | L. Gomes, M. Lima, TODIMI: Basics and application to multicriteria ranking, Found. Comput. Decis. S., 16 (1991), 1–16. |
| [29] |
S. Pramanik, R. Mallick, TODIM strategy for multi-attribute group decision making in trapezoidal neutrosophic number environment, Complex Intell. Syst., 5 (2019), 379–389. https://doi.org/10.1007/s40747-019-0110-7 doi: 10.1007/s40747-019-0110-7
|
| [30] |
S. Pramanik, S. Dalapati, S. Alam, T. K. Roy, NC-TODIM-based MAGDM under a neutrosophic cubic set environment, Information, 8 (2017), 149. https://doi.org/10.3390/info8040149 doi: 10.3390/info8040149
|
| [31] | S. Pramanik, S. Dalapati, S. Alam, T. K. Roy, TODIM method for group decision making under bipolar neutrosophic set environment, Infinite Study, 2016. |
| [32] |
Y. Yin, J. Liu, Risk assessment of photovoltaic-energy storage utilization project based on improved cloud-TODIM in China, Energy, 253 (2022), 124177. https://doi.org/10.1016/j.energy.2022.124177 doi: 10.1016/j.energy.2022.124177
|
| [33] |
H. C. Liu, H. Shi, Z. Li, C. Y. Duan, An integrated behavior decision-making approach for large group quality function deployment, Inf. Sci., 582 (2022), 334–348. https://doi.org/10.1016/j.ins.2021.09.020 doi: 10.1016/j.ins.2021.09.020
|
| [34] |
N. Liao, G. Wei, X. Chen, TODIM method based on cumulative prospect theory for multiple attributes group decision making under probabilistic hesitant fuzzy setting, Int. J. Fuzzy Syst., 36 (2022), 2548–2571. https://doi.org/10.1002/int.22393 doi: 10.1002/int.22393
|
| [35] |
M. Zhao, G. Wei, C. Wei, J. Wu, Pythagorean fuzzy TODIM method based on the cumulative prospect theory for MAGDM and its application on risk assessment of science and technology projects, Int. J. Fuzzy Syst., 23 (2021), 1027–1041. https://doi.org/10.1007/s40815-020-00986-8 doi: 10.1007/s40815-020-00986-8
|
| [36] |
Y. Su, M. Zhao, C. Wei, X. Chen, PT-TODIM method for probabilistic linguistic MAGDM and application to industrial control system security supplier selection, Int. J. Fuzzy Syst., 24 (2022), 202–215. https://doi.org/10.1007/s40815-021-01125-7 doi: 10.1007/s40815-021-01125-7
|
| [37] |
M. Anjum, V. Simic, M. Alrasheedi, S. Shahab, T-spherical fuzzy-CRITIC-WASPAS model for the evaluation of cooperative intelligent transportation system scenarios, IEEE Access, 12 (2024), 61137–61151. https://doi.org/10.1109/ACCESS.2024.3392019 doi: 10.1109/ACCESS.2024.3392019
|
| [38] |
T. Y. Chen, Multiple criteria choice modeling using the grounds of T-spherical fuzzy REGIME analysis, Int. J. Intell. Syst., 37 (2022), 1972–2011. https://doi.org/10.1002/int.22762 doi: 10.1002/int.22762
|
| [39] |
L. F. A. Gomes, L. A. D. Rangel, F. J. C. Maranhão, Multicriteria analysis of natural gas destination in Brazil: An application of the TODIM method, Math. Comput. Model., 50 (2009), 92–100. https://doi.org/10.1016/j.mcm.2009.02.013 doi: 10.1016/j.mcm.2009.02.013
|
| [40] |
R. A. Krohling, T. T. D. Souza, Combining prospect theory and fuzzy numbers to multi-criteria decision making, Expert Syst. Appl., 39 (2012), 11487–11493. https://doi.org/10.1016/j.eswa.2012.04.006 doi: 10.1016/j.eswa.2012.04.006
|
| [41] |
J. Qin, X. Liu, W. Pedrycz, An extended TODIM multi-criteria group decision making method for green supplier selection in interval type-2 fuzzy environment, Eur. J. Oper. Res., 258 (2017), 626–638. https://doi.org/10.1016/j.ejor.2016.09.059 doi: 10.1016/j.ejor.2016.09.059
|
| [42] |
L. Wang, Y. M. Wang, L. Martínez, Fuzzy TODIM method based on alpha-level sets, Expert Syst. Appl., 140 (2020), 112899. https://doi.org/10.1016/j.eswa.2019.112899 doi: 10.1016/j.eswa.2019.112899
|
| [43] |
J. Ali, Z. Bashir, T. Rashid, A cubic q-rung orthopair fuzzy TODIM method based on Minkowski-type distance measures and entropy weight, Soft Comput., 27 (2023), 15199–15223. https://doi.org/10.1007/s00500-023-08552-8 doi: 10.1007/s00500-023-08552-8
|
| [44] |
A. Thilagavathy, S. Mohanaselvi, T-spherical fuzzy Hamacher Heronian mean geometric operators for multiple criteria group decision making using SMART-based TODIM method, Results Control Optim., 14 (2024), 100357. https://doi.org/10.1016/j.rico.2023.100357 doi: 10.1016/j.rico.2023.100357
|
| [45] |
B. K. Giri, S. K. Roy, CI-MM-Dombi operator based on interval type-2 spherical fuzzy set and its applications on sustainable supply chain with risk criteria: Using CI-TODIM-MARCOS method, Soft Comput., 28 (2024), 10023–10056. https://doi.org/10.1007/s00500-024-09794-w doi: 10.1007/s00500-024-09794-w
|
| [46] |
M. Akram, S. Azam, M. M. A. A. Shamiri, D. Pamucar, An outranking method for selecting the best gate security system using spherical fuzzy rough numbers, Eng. Appl. Artif. Intel., 138 (2024), 109411. https://doi.org/10.1016/j.engappai.2024.109411 doi: 10.1016/j.engappai.2024.109411
|
| [47] | S. Ashraf, W. Iqbal, M. S. Hameed, V. Simic, N. Bacanin, An enhanced CRADIS decision model for optimizing radioactive waste reduction through transmutations based on disc spherical fuzzy information, Appl. Soft Comput., 2024, 112289. https://doi.org/10.1016/j.asoc.2024.112289 |
| [48] |
S. Ashraf, W. Iqbal, S. Ahmad, F. Khan, Circular spherical fuzzy Sugeno Weber aggregation operators: A novel uncertain approach for adapting a programming language for social media platforms, IEEE Access, 11 (2023), 124920–124941. https://doi.org/10.1109/ACCESS.2023.3329242 doi: 10.1109/ACCESS.2023.3329242
|
| [49] |
Q. A. Ahmad, S. Ashraf, W. Iqbal, M. L. Qiang, Enhanced decision technique for optimized crude oil pretreatment under disc spherical fuzzy Aczel-Alsina aggregation information, Sci. Rep., 14 (2024), 15088. https://doi.org/10.1038/s41598-024-62036-9 doi: 10.1038/s41598-024-62036-9
|
| [50] |
Z. Ali, M. S. Yang, On circular q-rung orthopair fuzzy sets with Dombi aggregation operators and application to symmetry analysis in artificial intelligence, Symmetry, 16 (2024), 260. https://doi.org/10.3390/sym16030260 doi: 10.3390/sym16030260
|
| [51] |
L. Zedam, N. Jan, E. Rak, T. Mahmood, K. Ullah, An approach towards decision-making and shortest path problems based on T-spherical fuzzy information, Int. J. Fuzzy Syst., 22 (2020), 1521–1534. https://doi.org/10.1007/s40815-020-00820-1 doi: 10.1007/s40815-020-00820-1
|
| [52] |
J. Ali, M. Naeem, $r, s, t$-spherical fuzzy VIKOR method and its application in multiple criteria group decision making, IEEE Access, 11 (2023), 46454–46475. https://doi.org/10.1109/ACCESS.2023.3271141 doi: 10.1109/ACCESS.2023.3271141
|