Research article Special Issues

Schröder's method and the infinity point

  • Published: 05 June 2025
  • MSC : 37F10, 65S05

  • This paper presents an initial investigation into the dynamic properties of a well-known iterative method for solving nonlinear equations: Schröder's method. We characterize the degree of the rational map induced by applying the method to polynomial equations, along with other dynamical features such as the nature of extraneous fixed points and the presence of attracting cycles. Particular attention is given to the significant dynamical differences between Schröder's method and other iterative methods, notably Newton's method, with a focus on the behavior at infinity.

    Citation: Víctor Galilea, José Manuel Gutiérrez. Schröder's method and the infinity point[J]. AIMS Mathematics, 2025, 10(6): 12919-12934. doi: 10.3934/math.2025581

    Related Papers:

  • This paper presents an initial investigation into the dynamic properties of a well-known iterative method for solving nonlinear equations: Schröder's method. We characterize the degree of the rational map induced by applying the method to polynomial equations, along with other dynamical features such as the nature of extraneous fixed points and the presence of attracting cycles. Particular attention is given to the significant dynamical differences between Schröder's method and other iterative methods, notably Newton's method, with a focus on the behavior at infinity.



    加载中


    [1] E. Schröder, Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen, (German), Mate. Ann., 2 (1870), 317–365.
    [2] G. W. Stewart, On infinitely many algorithms for solving equations, Technical Reports from UMIACS, 1993, TR-2990.
    [3] M. A. Hernández-Verón, A note on Halley's method, Extracta Mathematicae, 3 (1988), 104–106.
    [4] J. F. Traub, Iterative methods for the solution of equations, Englewood Cliffs: Prentice-Hall, 1964.
    [5] G. E. Roberts, J. Horgan-Kobelski, Newton's versus Halley's methods: a dynamical systems approach, Int. J. Bifur. Chaos, 14 (2004), 3459–3475. https://doi.org/10.1142/S0218127404011399 doi: 10.1142/S0218127404011399
    [6] J. M. Gutiérrez, J. L. Varona, Superattracting extraneous fixed points and $n$-cycles for Chebyshev's method on cubic polynomials, Qual. Theory Dyn. Syst., 19 (2020), 54. https://doi.org/10.1007/s12346-020-00390-5 doi: 10.1007/s12346-020-00390-5
    [7] D. K. R. Babajee, A. Cordero, J. R. Torregrosa, Study of iterative methods through the Cayley Quadratic Test, J. Comput. Appl. Math., 291 (2016), 358–369. https://doi.org/10.1016/j.cam.2014.09.020 doi: 10.1016/j.cam.2014.09.020
    [8] B. Campos, E. G. Villalba, P. Vindel, Dynamical and numerical analysis of classical multiple roots finding methods applied for different multiplicities, Comput. Appl. Math., 43 (2024), 230. https://doi.org/10.1007/s40314-024-02746-y doi: 10.1007/s40314-024-02746-y
    [9] P. I. Marcheva, S. I. Ivanov, Convergence and dynamics of Schröder's method for zeros of analytic functions with unknown multiplicity, Mathematics, 13 (2025), 275. https://doi.org/10.3390/math13020275 doi: 10.3390/math13020275
    [10] T. Nayak, S. Pal, The Julia sets of Chebyshev's method with small degrees, Nonlinear Dyn., 110 (2022), 803–819. https://doi.org/10.1007/s11071-022-07648-4 doi: 10.1007/s11071-022-07648-4
    [11] J. M. Gutiérrez, V. Galilea, Two dynamic remarks on the chebyshev-halley family ofiterative methods for solving nonlinear equations, Axioms, 12 (2023), 1114. https://doi.org/10.3390/axioms12121114 doi: 10.3390/axioms12121114
    [12] K. Kneisl, Julia sets for the super-Newton method, Cauchy's method and Halley's method, Chaos, 11 (2001), 359–370. https://doi.org/10.1063/1.1368137 doi: 10.1063/1.1368137
    [13] E. R. Vrscay, W. J. Gilbert, Extraneous fixed points, basin boundaries and chaotic dynamics for Schröder and König rational iteration functions, Numer. Math., 52 (1988), 1–16. https://doi.org/10.1007/BF01401018 doi: 10.1007/BF01401018
    [14] V. Galilea, J. M. Gutiérrez, A characterization of the dynamics of Schröder's method for polynomials with two roots, Fractal Fract., 5 (2021), 25. https://doi.org/10.3390/fractalfract5010025 doi: 10.3390/fractalfract5010025
    [15] S. Amat, S. Busquier, S. Plaza, Review of some iterative root-finding methods from a dynamical point of view, Scientia Series A: Mathematical Sciences, 10 (2004), 3–35.
    [16] E. R. Vrscay, Julia sets and Mandelbrot-like sets associated with higher order Schröder rational iteration functions: a computer assisted study, Math. Comp., 46 (1986), 151–169. https://doi.org/10.1090/s0025-5718-1986-0815837-5 doi: 10.1090/s0025-5718-1986-0815837-5
    [17] A. F. Beardon, Iteration of rational functions: complex analytic dynamical systems, New York: Springer, 1991.
    [18] J. Hubbard, D. Schleicher, S. Sutherland, How to find all roots of complex polynomials by Newton's method, Invent. Math., 146 (2001), 1–33. https://doi.org/10.1007/s002220100149 doi: 10.1007/s002220100149
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(984) PDF downloads(46) Cited by(0)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog