Since the official launch of domestic exchange-traded options in 2015, options have gradually become an important component of the financial market. With the diversification of option types and the expansion of market size, option pricing research has received widespread attention. In this paper, we propose a finite difference method based on exponential integrals for the pricing of European call options, based on the Black-Scholes differential equation. Through numerical analysis, this method discretizes only the price region and uses the exponential Euler method to solve the nonhomogeneous system of linear differential equations in the time direction. Numerical experiments have verified the effectiveness of this method, showing that it can stably solve option pricing problems, especially when the price is close to the exercise price, demonstrating superior numerical performance.
Citation: Xun Lu, Wei Shi, Changhao Yang, Fan Yang. Exponential integral method for European option pricing[J]. AIMS Mathematics, 2025, 10(6): 12900-12918. doi: 10.3934/math.2025580
Since the official launch of domestic exchange-traded options in 2015, options have gradually become an important component of the financial market. With the diversification of option types and the expansion of market size, option pricing research has received widespread attention. In this paper, we propose a finite difference method based on exponential integrals for the pricing of European call options, based on the Black-Scholes differential equation. Through numerical analysis, this method discretizes only the price region and uses the exponential Euler method to solve the nonhomogeneous system of linear differential equations in the time direction. Numerical experiments have verified the effectiveness of this method, showing that it can stably solve option pricing problems, especially when the price is close to the exercise price, demonstrating superior numerical performance.
| [1] | L. Bachelier, The theory of speculation, Annal. Sci. L'$\acute{E}$cole Normale Sup$\acute{e}$rieure, 3 (1900), 21–86. |
| [2] |
F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Economy, 81 (1973), 637–654. https://doi.org/10.1086/260062 doi: 10.1086/260062
|
| [3] |
A. D. Holmes, H. Yang, A front-fixing finite element method for the valuation of American options, SIAM J. Sci. Comput., 30 (2008), 2158–2180. https://doi.org/10.1137/070694442 doi: 10.1137/070694442
|
| [4] | Y. Yan, J. Zhao, A simple American option pricing model, China-USA Busin. Review, 4 (2008), 20–24. |
| [5] |
A. Andalaft-Chacur, M. M. Ali, J. G. Salazar, Real options pricing by the finite element method, Comput. Math. Appli-cations, 61 (2011), 2863–2873. https://doi.org/10.1016/j.camwa.2011.03.070 doi: 10.1016/j.camwa.2011.03.070
|
| [6] |
S. Zhu, W. Chen, An inverse finite element method for pricing American options, J. Economic Dyn. Control, 37 (2013), 231–250. https://doi.org/10.1016/j.jedc.2012.08.002 doi: 10.1016/j.jedc.2012.08.002
|
| [7] |
S. Kozpınar, M. Uzunca, Pricing European and American options under Heston model using discontinuous Galerkin finite elements, Math. Comput. Simulation, 177 (2020), 568–587. https://doi.org/10.1016/j.matcom.2020.05.022 doi: 10.1016/j.matcom.2020.05.022
|
| [8] |
R. Zhang, Q. Zhang, H. Song, An efficient finite element method for pricing American multi asset put options, Commun. Nonlinear Sci., 29 (2015), 25–36. https://doi.org/10.1016/j.cnsns.2015.03.022 doi: 10.1016/j.cnsns.2015.03.022
|
| [9] |
A. Abdulle, C. Bréhier, G. Vilmart, Convergence analysis of explicit stabilized integrators for parabolic semilinear stochastic PDEs, IMA J. Num. Anal., 43 (2023), 258–292. https://doi.org/10.1093/imanum/drab090 doi: 10.1093/imanum/drab090
|
| [10] |
J. C. Cox, S. A. Ross, M. Rubinstein, Option pricing: A simplified approach, J. Financ. Economet., 7 (1979), 229–263. https://doi.org/10.1016/0304-405X(79)90015-1 doi: 10.1016/0304-405X(79)90015-1
|
| [11] |
D. P. J. Leisen, Pricing the American put option: A detailed convergence analysis for binomial models, J. Econ. Dyn. Control, 22 (1998), 1419–1444. https://doi.org/10.1016/S0165-1889(98)00019-0 doi: 10.1016/S0165-1889(98)00019-0
|
| [12] |
D. P. J. Leisen, M. Reimer, Binomial models for option valuation examining and improving convergence, Appl. Math. Finance, 3 (1996), 319–346. https://doi.org/10.1080/13504869600000015 doi: 10.1080/13504869600000015
|
| [13] |
L. Chang, K. Palrmer, Smooth convergence in the binomial model, Financ. Stoch., 11 (2007), 91–105. https://doi.org/10.1007/s00780-006-0020-6 doi: 10.1007/s00780-006-0020-6
|
| [14] |
H. Reynaerts, M. Vanmaele, J. Dhaene, G. Deelstra, Bounds for the price of a European-style Asian option in a binary tree model, Eur. J. Oper. Res., 168 (2006), 322–332. https://doi.org/10.1016/j.ejor.2004.07.009 doi: 10.1016/j.ejor.2004.07.009
|
| [15] | W. Gong, Z. xu, A trinomial tree option pricing method based on garch model, Math. Prac. Theory, 50 (2020), 106–114. |
| [16] |
P. P. Boyle, Options: A Monte Carlo approach, J. Financ. Econ., 4 (1977), 323–338. https://doi.org/10.1016/0304-405X(77)90005-8 doi: 10.1016/0304-405X(77)90005-8
|
| [17] |
F. A. Longstaff, E. S. Schwartz, Valuing American options by simulation: A simple least-square approach, Rev. Financ. Stud., 14 (2001), 113–147. https://doi.org/10.1093/rfs/14.1.113 doi: 10.1093/rfs/14.1.113
|
| [18] |
K. Nouri, B. Abbasi, Implementation of the modified Monte Carlo simulation for evaluate the barrier option prices, J. Taibah Univ. Sci., 11 (2017), 233–240. https://doi.org/10.1016/j.jtusci.2015.02.010 doi: 10.1016/j.jtusci.2015.02.010
|
| [19] |
P. Capuozzo, E. Panella, T. S. Gherardini, D. D. Vvedensky, Path integral Monte Carlo method for option pricing, Stat. Mech. Appl., 581 (2021), 126231. https://doi.org/10.1016/j.physa.2021.126231 doi: 10.1016/j.physa.2021.126231
|
| [20] |
J. Xiang, X. Wang, Quasi-Monte Carlo simulation for American option sensitivities, J. Comput. Appl. Math., 413 (2022), 114268. https://doi.org/10.1016/j.cam.2022.114268 doi: 10.1016/j.cam.2022.114268
|
| [21] |
Y. Xia, M. Grabchak, Pricing multi-asset options with tempered stable distributions, Financ. Innov., 10 (2024). https://doi.org/10.1186/s40854-024-00649-9 doi: 10.1186/s40854-024-00649-9
|
| [22] |
D. Chen, H. J. Härkönen, D. P. Newton, Advancing the universality of quadrature methods to any underlying process for option pricing, J. Financ. Econ., 114 (2014), 600–612. https://doi.org/10.1016/j.jfineco.2014.07.014 doi: 10.1016/j.jfineco.2014.07.014
|
| [23] |
Y. K. Kwok, K. S. Leung, H. Y. Wong, Efficient options pricing using the fast fourier transform, J. Handbook Comput. Finance, 2012. https://doi.org/10.1007/978-3-642-17254-0_21 doi: 10.1007/978-3-642-17254-0_21
|
| [24] |
R. C. Merton, Option pricing when underlying stock returns are discontinueous, J. Financ. Econ., 3 (1976), 125–144. https://doi.org/10.1016/0304-405X(76)90022-2 doi: 10.1016/0304-405X(76)90022-2
|
| [25] |
M. Brennan, E. Schwartz, Finite difference methods and jump processes arising in the pricing of contingent claims:a synresearch, J. Financ. Quant. Anal., 13 (1978), 461–473. https://doi.org/10.2307/2330152 doi: 10.2307/2330152
|
| [26] |
R. Cont, E. Voltchkova, A finite difference scheme for option pricing in jump diffusion and exponential lévy models, SIAM J. Numerical Anal., 43 (2005), 1596–1626. https://doi.org/10.1137/S0036142903436186 doi: 10.1137/S0036142903436186
|
| [27] |
O. Kudryavtsev, Finite difference methods for option pricing under Lévy processes: Wiener-Hopf factorization approach, Sci. World J., 30 (2013), 963625. https://doi.org/10.1155/2013/963625 doi: 10.1155/2013/963625
|
| [28] |
A. Khaliq, D. Voss, K. Kazmi, Adaptive $\theta$-methods for pricing American options, J. Comput. Appl. Math., 222 (2008), 210–227. https://doi.org/10.1016/j.cam.2007.10.035 doi: 10.1016/j.cam.2007.10.035
|
| [29] |
D. Y. Tangman, A. Gopaul, M. Bhuruth, A fast high-order finite difference algorithm for pricing American options, J. Comput. Appl. Math., 222 (2008), 17–29. https://doi.org/10.1016/j.cam.2007.10.044 doi: 10.1016/j.cam.2007.10.044
|
| [30] |
B. Hu, J. Liang, L. Jiang, Optimal convergence rate of the explicit finite difference scheme for American option valuation, J. comput. Appl. Math., 230 (2009), 583–599. https://doi.org/10.1016/j.cam.2008.12.018 doi: 10.1016/j.cam.2008.12.018
|
| [31] | C. Gu, Y. Kang, An effective seven-point finite difference gmres method for pricing european call options, Commun. Appl. Math. Comput., 28 (2014), 518–528. |
| [32] |
L. Song, W. Wang, Solution of the fractional Black-Scholes option pricing model by finite difference method, Abstr. Appl. Anal., 2013, 10–20. https://doi.org/10.1155/2013/194286 doi: 10.1155/2013/194286
|
| [33] |
P. Roul, V. M. K. Prasad Goura, A compact finite difference scheme for fractional Black-Scholes option pricing model, Appl. Numer. Math., 166 (2021), 40–60. https://doi.org/10.1016/j.apnum.2021.03.017 doi: 10.1016/j.apnum.2021.03.017
|
| [34] |
J. Ma, Z. Zhou, Z. Cui Hybrid Laplace transform and finite difference methods forpricing American options under complex models, Comput. Math. Appl., 74 (2017), 369–384. https://doi.org/10.1016/j.camwa.2017.04.018 doi: 10.1016/j.camwa.2017.04.018
|
| [35] |
R. A. El-Nabulsi, W. Anukool, Qualitative financial modelling in fractal dimensions, Financ. Innov., 11 (2025) https://doi.org/10.1186/s40854-024-00723-2 doi: 10.1186/s40854-024-00723-2
|
| [36] |
S. M. Cox, P. C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys., 176 (2002), 430–455. https://doi.org/10.1006/jcph.2002.6995 doi: 10.1006/jcph.2002.6995
|
| [37] |
M. Hochbruck, C. Lubich, H. Selhofer, Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput., 19 (1998), 1552–1574. https://doi.org/10.1137/S1064827595295337 doi: 10.1137/S1064827595295337
|
| [38] |
M. Hochbruck, A. Ostermann, Exponential integrators, Acta Numer., 19 (2010), 209–286. https://doi.org/10.1017/S0962492910000048 doi: 10.1017/S0962492910000048
|
| [39] |
H. G. Roos, M. Stynes, L. Tobiska, Numerical methods for singularly perturbed difffferential equations: Convection flow problems, Springer Series Comput. Math., 24, (1996), https://doi.org/10.1002/zamm.19970770525 doi: 10.1002/zamm.19970770525
|
| [40] |
P. D. Lax, R. D. Richtmyer, Survey of the stability of linear finite difference equations, Commun. Pure Appl. Math., 9 (1956), 267–293. https://doi.org/10.1002/cpa.3160090206 doi: 10.1002/cpa.3160090206
|
| [41] |
K. S. Chen, J. J. Yang, Price dynamics and volatility jumps in bitcoin options, Financ. Innov., 10 (2024) https://doi.org/10.1186/s40854-024-00653-z doi: 10.1186/s40854-024-00653-z
|