The objectives of this paper are three steps: first, to generalize the idea of complete $ M $-cone metric spaces over Banach algebra; second, to present a new topological structure utilizing the concept introduced by Fernandez et al. (Fixed point results in M-cone metric space over Banach algebra with an application, Filomat, 36 (2022), 5547–5562.); and third, to explore the idea of Banach algebra type relational theoretic contractions and cyclic Banach algebra type contractions in $ M $-cone metric spaces, establishing several fixed point results for these contractions. To illustrate the discussed concepts and results, several examples are provided. As an application, we discuss a solution of the nonlinear integral equation based on the main results.
Citation: Muhammad Tariq, Saber Mansour, Abdullah Assiry, Jalil Ur Rehman. Recent advancements in $ M $-cone metric space over Banach algebra endowed with binary relation[J]. AIMS Mathematics, 2025, 10(6): 12935-12955. doi: 10.3934/math.2025582
The objectives of this paper are three steps: first, to generalize the idea of complete $ M $-cone metric spaces over Banach algebra; second, to present a new topological structure utilizing the concept introduced by Fernandez et al. (Fixed point results in M-cone metric space over Banach algebra with an application, Filomat, 36 (2022), 5547–5562.); and third, to explore the idea of Banach algebra type relational theoretic contractions and cyclic Banach algebra type contractions in $ M $-cone metric spaces, establishing several fixed point results for these contractions. To illustrate the discussed concepts and results, several examples are provided. As an application, we discuss a solution of the nonlinear integral equation based on the main results.
| [1] | S. Banach, Sur les operations dans les ensembles abstraits et leurs applications aux equations integrales, Fund. Math., 3 (1922), 133–181. |
| [2] | K. C. Border, Fixed point theorems with applications to economics and game theory, Cambridge University Press, 1985. https://doi.org/10.1017/CBO9780511625756 |
| [3] | W. A. Kirk, P. S. Srinivasan, P. Veeramani, Fixed points for mapping satisfying cyclic contractive conditions, Fixed Point Theor., 4 (2003), 79–89. |
| [4] |
S. G. Matthews, Partial metric topology, Ann. NY Acad. Sci., 728 (1994) 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x
|
| [5] |
L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087
|
| [6] |
H. Liu, S. Xu, Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings, Fixed Point Theory Appl., 2013 (2013), 320. https://doi.org/10.1186/1687-1812-2013-320 doi: 10.1186/1687-1812-2013-320
|
| [7] |
A. Alam, M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl., 17 (2015), 693–702. https://doi.org/10.1007/s11784-015-0247-y doi: 10.1007/s11784-015-0247-y
|
| [8] |
S. K. Malhotra, J. B. Sharma, S. Shukla, Relation-theoretic contraction principle in cone metric spaces with Banach algebra, Ser. A Appl. Math. Inf. Mech., 8 (2016), 87–100. https://doi.org/10.5937/SPSUNP1601087M doi: 10.5937/SPSUNP1601087M
|
| [9] |
M. Tariq, M. Arshad, M. Abbas, E. Ameer, S. Mansour, H. Aydi, A relation theoretic m-metric fixed point algorithm and related applications, AIMS Math., 8 (2023), 19504–19525. https://doi.org/10.3934/math.2023995 doi: 10.3934/math.2023995
|
| [10] |
A. Malhotra, D. Kumar, C. Park, C*-algebra valued R-metric space and fixed point theorems, AIMS Math., 7 (2022), 6550–6564. https://doi.org/10.3934/math.2022365 doi: 10.3934/math.2022365
|
| [11] | J. Fernandez, Partial cone metric spaces over Banach algebra and generalized Lipschitz mappings with applications, 2016. |
| [12] |
H. Huang, W. S. Du, J. Y. Chen, On BID-cone b-metric spaces over Banach algebras: New topological properties and fixed point theorems, Mathematics, 10 (2022), 1425. https://doi.org/10.3390/math10091425 doi: 10.3390/math10091425
|
| [13] |
M. Asadi, E. Karapinar, P. Salimi, New extension of $p$-metric spaces with fixed points results on $M$-metric spaces, J. Inequal. Appl., 2014 (2014), 18. https://doi.org/10.1186/1029-242X-2014-18 doi: 10.1186/1029-242X-2014-18
|
| [14] |
M. Tariq, S. Mansour, M. Abbas, A. Assiry, A solution to the non-cooperative equilibrium problem for two and three players using the fixed-point technique, Symmetry, 17 (2025), 544. https://doi.org/10.3390/sym17040544 doi: 10.3390/sym17040544
|
| [15] |
I. Ayoob, N. Z. Chuan, N. Mlaiki, Quasi M-metric spaces, AIMS Math., 8 (2023), 10228–10248. https://doi.org/10.3934/math.2023518 doi: 10.3934/math.2023518
|
| [16] |
M. Tariq, E. Ameer, A. Ali, H. A. Hammad, F. Jarad, Applying fixed point techniques for obtaining a positive definite solution to nonlinear matrix equation, AIMS Math., 8 (2023), 3842–3859. https://doi.org/10.3934/math.2023191 doi: 10.3934/math.2023191
|
| [17] |
J. Fernandeza, N. Malviyab, E. Gili, Fixed point results in M-cone metric space over Banach algebra with an application, Filomat, 36 (2022), 5547–5562. https://doi.org/10.2298/FIL2216547F doi: 10.2298/FIL2216547F
|
| [18] | W. Rudin, Functional analysis, New York, 1991. |
| [19] |
S. Xu, S. Radenovic, Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality, Fixed Point Theory Appl., 2014 (2014), 102. https://doi.org/10.1186/1687-1812-2014-102 doi: 10.1186/1687-1812-2014-102
|
| [20] |
S. Radenovic, B. E. Rhoades, Fixed point theorem for two non-self mappings in cone metric spaces, Comput. Math. Appl., 57 (2009), 1701–1707. https://doi.org/10.1016/j.camwa.2009.03.058 doi: 10.1016/j.camwa.2009.03.058
|
| [21] | S. Lipschutz, Schaum's outline of theory and problems of set theory and related topics, 1964. |
| [22] | B. Kolman, R. C. Busby, S. Ross, Discrete mathematical structures, 1995. |
| [23] | B. Samet, M. Turinici, Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications, Commun. Math. Anal., 13 (2012), 82–97. |