Theory article

Nonexistence results of nonnegative solutions of elliptic equations and systems on the Heisenberg group

  • Published: 29 May 2025
  • MSC : 35J62, 35B09, 35A23, 35R03

  • This paper establishes sharp nonexistence criteria for nonnegative solutions to a class of quasilinear elliptic inequalities and divergence-type systems in the subelliptic framework of the Heisenberg group $ H^n $. By developing an optimized test function methodology adapted to the stratified Lie group structure, nonexistence is established through a contradiction argument based on maximum principle-type inequalities. The analysis contributes new insights into the role of sub-Riemannian geometry in constraining the solution behavior for degenerate elliptic operators.

    Citation: Wei Shi. Nonexistence results of nonnegative solutions of elliptic equations and systems on the Heisenberg group[J]. AIMS Mathematics, 2025, 10(5): 12576-12597. doi: 10.3934/math.2025567

    Related Papers:

  • This paper establishes sharp nonexistence criteria for nonnegative solutions to a class of quasilinear elliptic inequalities and divergence-type systems in the subelliptic framework of the Heisenberg group $ H^n $. By developing an optimized test function methodology adapted to the stratified Lie group structure, nonexistence is established through a contradiction argument based on maximum principle-type inequalities. The analysis contributes new insights into the role of sub-Riemannian geometry in constraining the solution behavior for degenerate elliptic operators.



    加载中


    [1] B. Ahmad, A. Alsaedi, M. Kirane, Nonexistence of global solutions of some nonlinear space-nonlocal evolution equations on the Heisenberg groups, Electron J. Differ. Eq., 227 (2015), 1–10. Available from: http://ejde.math.txstate.edu.
    [2] M. Jleli, M. Kirane, B. Samet, Nonexistence results for a class of evolution equations in the Heisenberg group, Fract. Calc. Appl. Anal., 18 (2015), 717–734. https://doi.org/10.1515/fca-2015-0044 doi: 10.1515/fca-2015-0044
    [3] I. Birindelli, Superharmonic functions in the Heisenberg group: Estimates and Liouville theorems, NoDEA Nonlinear Diff., 10 (2003), 171–185. https://doi.org/10.1007/s00030-003-1003-3 doi: 10.1007/s00030-003-1003-3
    [4] A. Kassymov, D. Suragan, Multiplicity of positive solutions for a nonlinear equation with a Hardy potential on the Heisenberg group, Bull. Sci. Math., 165 (2020), 102916. https://doi.org/10.1016/j.bulsci.2020.102916 doi: 10.1016/j.bulsci.2020.102916
    [5] B. Gidas, J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., 34 (1981), 525–598. https://doi.org/10.1002/cpa.3160340406 doi: 10.1002/cpa.3160340406
    [6] T. Godoy, Positive solutions of nonpositone sublinear elliptic problems, Opuscula Math., 44 (2024), 827–851. https://doi.org/10.7494/OpMath.2024.44.6.827 doi: 10.7494/OpMath.2024.44.6.827
    [7] S. Pohozaev, L. Véron, Nonexistence results of solutions of semilinear differential inequalities on the Heisenberg group, Manuscripta Math., 102 (2000), 85–99. https://doi.org/10.1007/PL00005851 doi: 10.1007/PL00005851
    [8] P. Pucci, M. Rigoli, J. Serrin, Qualitative properties for solutions of singular elliptic inequalities on complete manifolds, J. Differ. Equ., 234 (2007), 507–543. https://doi.org/10.1016/j.jde.2006.11.013 doi: 10.1016/j.jde.2006.11.013
    [9] P. Pucci, J. Serrin, H. Zou, A strong maximum principle and a compact support principle for singular elliptic inequalities, J. Math. Pures Appl., 78 (1999), 769–789. https://doi.org/10.1016/S0021-7824(99)00030-6 doi: 10.1016/S0021-7824(99)00030-6
    [10] R. Filippucci, Nonexistence of nonnegative solutions of elliptic systems of divergence type, J. Differ. Equ., 250 (2011), 572–595. https://doi.org/10.1016/j.jde.2010.09.028 doi: 10.1016/j.jde.2010.09.028
    [11] G. Caristi, E. Mitidieri, S. Pohozaev, Local estimates and Liouville theorems for a class of quasilinear inequalities, Dokl. Math., 77 (2008), 85–89. https://doi.org/10.1134/S1064562408010213 doi: 10.1134/S1064562408010213
    [12] D. S. Jerison, J. M. Lee, Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc., 1 (1988), 1–13. https://doi.org/10.2307/1990964 doi: 10.2307/1990964
    [13] J. Dou, P. Niu, Z. Yuan, A Hardy inequality with remainder terms in the Heisenberg group and the weighted eigenvalue problem, J. Inequal. Appl., 1 (2007), 32585. https://doi.org/10.1155/2007/32585 doi: 10.1155/2007/32585
    [14] X. Sun, Y. Song, S. Liang, On the critical Choquard-Kirchhoff problem on the Heisenberg group, Adv. Nonlinear Anal., 12 (2023), 210–236. https://doi.org/10.1515/anona-2022-0270 doi: 10.1515/anona-2022-0270
    [15] Y. Hu, Reversed Hardy-Littlewood-Sobolev inequalities with weights on the Heisenberg group, Adv. Nonlinear Anal., 12 (2023), 20230116. https://doi.org/10.1515/anona-2023-0116 doi: 10.1515/anona-2023-0116
    [16] J. Dou, P. Niu, Nonexistence of weak solutions for p-sub-Laplacian inequalities on the Heisenberg group, J. jilin Univ., 44 (2006), 163–169.
    [17] X. Sun, Y. Song, S. Liang, B. Zhang, Critical Kirchhoff equations involving the $p$-sub-Laplacians operators on the Heisenberg group, Bull. Math. Sci., 13 (2023), 2250006. https://doi.org/10.1142/S1664360722500060 doi: 10.1142/S1664360722500060
    [18] H. Liu, P. Niu, Maximum principles of nonhomogeneous subelliptic p-Laplace equations and applications, J. Partial Differ. Equ., 4 (2006), 289–303. https://doi.org/2006-JPDE-5333
    [19] A. Kassymov, M. Ruzhansky, N. Tokmagambetov, B. Torebek, Liouville theorems for Kirchhoff-type hypoelliptic Partial Differential Equations and systems. I. Heisenberg group, arXiv e-prints, arXiv: 2110.01082, 2021.
    [20] Y. Zheng, Liouville theorems to system of elliptic differential inequalities on the Heisenberg group, arXiv preprint, arXiv: 2106.01724, 2021.
    [21] M. Ghergu, P. Karageorgis, G. Singh, Positive solutions for quasilinear elliptic inequalities and systems with nonlocal terms, J. Differ. Equ., 268 (2020), 6033–6066. https://doi.org/10.1016/j.jde.2019.11.013 doi: 10.1016/j.jde.2019.11.013
    [22] L. Capogna, S. D. Pauls, D. Danielli, J. T. Tyson, An introduction to the Heisenberg group and the Sub-Riemannian isoperimetric problem, Birkhäuser Basel, Progress in Mathematics, 2007.
    [23] G. Folland, E. Stein, Hardy spaces on homogeneous groups, Volume 28 of Mathematical Notes. Princeton University Press, Princeton, NJ 1982.
    [24] P. C. Greiner, Spherical harmonics on the Heisenberg group, Can. Math. Bull., 23 (1980), 383–396. https://doi.org/10.4153/CMB-1980-057-9 doi: 10.4153/CMB-1980-057-9
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(575) PDF downloads(35) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog