This paper establishes sharp nonexistence criteria for nonnegative solutions to a class of quasilinear elliptic inequalities and divergence-type systems in the subelliptic framework of the Heisenberg group $ H^n $. By developing an optimized test function methodology adapted to the stratified Lie group structure, nonexistence is established through a contradiction argument based on maximum principle-type inequalities. The analysis contributes new insights into the role of sub-Riemannian geometry in constraining the solution behavior for degenerate elliptic operators.
Citation: Wei Shi. Nonexistence results of nonnegative solutions of elliptic equations and systems on the Heisenberg group[J]. AIMS Mathematics, 2025, 10(5): 12576-12597. doi: 10.3934/math.2025567
This paper establishes sharp nonexistence criteria for nonnegative solutions to a class of quasilinear elliptic inequalities and divergence-type systems in the subelliptic framework of the Heisenberg group $ H^n $. By developing an optimized test function methodology adapted to the stratified Lie group structure, nonexistence is established through a contradiction argument based on maximum principle-type inequalities. The analysis contributes new insights into the role of sub-Riemannian geometry in constraining the solution behavior for degenerate elliptic operators.
| [1] | B. Ahmad, A. Alsaedi, M. Kirane, Nonexistence of global solutions of some nonlinear space-nonlocal evolution equations on the Heisenberg groups, Electron J. Differ. Eq., 227 (2015), 1–10. Available from: http://ejde.math.txstate.edu. |
| [2] |
M. Jleli, M. Kirane, B. Samet, Nonexistence results for a class of evolution equations in the Heisenberg group, Fract. Calc. Appl. Anal., 18 (2015), 717–734. https://doi.org/10.1515/fca-2015-0044 doi: 10.1515/fca-2015-0044
|
| [3] |
I. Birindelli, Superharmonic functions in the Heisenberg group: Estimates and Liouville theorems, NoDEA Nonlinear Diff., 10 (2003), 171–185. https://doi.org/10.1007/s00030-003-1003-3 doi: 10.1007/s00030-003-1003-3
|
| [4] |
A. Kassymov, D. Suragan, Multiplicity of positive solutions for a nonlinear equation with a Hardy potential on the Heisenberg group, Bull. Sci. Math., 165 (2020), 102916. https://doi.org/10.1016/j.bulsci.2020.102916 doi: 10.1016/j.bulsci.2020.102916
|
| [5] |
B. Gidas, J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., 34 (1981), 525–598. https://doi.org/10.1002/cpa.3160340406 doi: 10.1002/cpa.3160340406
|
| [6] |
T. Godoy, Positive solutions of nonpositone sublinear elliptic problems, Opuscula Math., 44 (2024), 827–851. https://doi.org/10.7494/OpMath.2024.44.6.827 doi: 10.7494/OpMath.2024.44.6.827
|
| [7] |
S. Pohozaev, L. Véron, Nonexistence results of solutions of semilinear differential inequalities on the Heisenberg group, Manuscripta Math., 102 (2000), 85–99. https://doi.org/10.1007/PL00005851 doi: 10.1007/PL00005851
|
| [8] |
P. Pucci, M. Rigoli, J. Serrin, Qualitative properties for solutions of singular elliptic inequalities on complete manifolds, J. Differ. Equ., 234 (2007), 507–543. https://doi.org/10.1016/j.jde.2006.11.013 doi: 10.1016/j.jde.2006.11.013
|
| [9] |
P. Pucci, J. Serrin, H. Zou, A strong maximum principle and a compact support principle for singular elliptic inequalities, J. Math. Pures Appl., 78 (1999), 769–789. https://doi.org/10.1016/S0021-7824(99)00030-6 doi: 10.1016/S0021-7824(99)00030-6
|
| [10] |
R. Filippucci, Nonexistence of nonnegative solutions of elliptic systems of divergence type, J. Differ. Equ., 250 (2011), 572–595. https://doi.org/10.1016/j.jde.2010.09.028 doi: 10.1016/j.jde.2010.09.028
|
| [11] |
G. Caristi, E. Mitidieri, S. Pohozaev, Local estimates and Liouville theorems for a class of quasilinear inequalities, Dokl. Math., 77 (2008), 85–89. https://doi.org/10.1134/S1064562408010213 doi: 10.1134/S1064562408010213
|
| [12] |
D. S. Jerison, J. M. Lee, Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc., 1 (1988), 1–13. https://doi.org/10.2307/1990964 doi: 10.2307/1990964
|
| [13] |
J. Dou, P. Niu, Z. Yuan, A Hardy inequality with remainder terms in the Heisenberg group and the weighted eigenvalue problem, J. Inequal. Appl., 1 (2007), 32585. https://doi.org/10.1155/2007/32585 doi: 10.1155/2007/32585
|
| [14] |
X. Sun, Y. Song, S. Liang, On the critical Choquard-Kirchhoff problem on the Heisenberg group, Adv. Nonlinear Anal., 12 (2023), 210–236. https://doi.org/10.1515/anona-2022-0270 doi: 10.1515/anona-2022-0270
|
| [15] |
Y. Hu, Reversed Hardy-Littlewood-Sobolev inequalities with weights on the Heisenberg group, Adv. Nonlinear Anal., 12 (2023), 20230116. https://doi.org/10.1515/anona-2023-0116 doi: 10.1515/anona-2023-0116
|
| [16] | J. Dou, P. Niu, Nonexistence of weak solutions for p-sub-Laplacian inequalities on the Heisenberg group, J. jilin Univ., 44 (2006), 163–169. |
| [17] |
X. Sun, Y. Song, S. Liang, B. Zhang, Critical Kirchhoff equations involving the $p$-sub-Laplacians operators on the Heisenberg group, Bull. Math. Sci., 13 (2023), 2250006. https://doi.org/10.1142/S1664360722500060 doi: 10.1142/S1664360722500060
|
| [18] | H. Liu, P. Niu, Maximum principles of nonhomogeneous subelliptic p-Laplace equations and applications, J. Partial Differ. Equ., 4 (2006), 289–303. https://doi.org/2006-JPDE-5333 |
| [19] | A. Kassymov, M. Ruzhansky, N. Tokmagambetov, B. Torebek, Liouville theorems for Kirchhoff-type hypoelliptic Partial Differential Equations and systems. I. Heisenberg group, arXiv e-prints, arXiv: 2110.01082, 2021. |
| [20] | Y. Zheng, Liouville theorems to system of elliptic differential inequalities on the Heisenberg group, arXiv preprint, arXiv: 2106.01724, 2021. |
| [21] |
M. Ghergu, P. Karageorgis, G. Singh, Positive solutions for quasilinear elliptic inequalities and systems with nonlocal terms, J. Differ. Equ., 268 (2020), 6033–6066. https://doi.org/10.1016/j.jde.2019.11.013 doi: 10.1016/j.jde.2019.11.013
|
| [22] | L. Capogna, S. D. Pauls, D. Danielli, J. T. Tyson, An introduction to the Heisenberg group and the Sub-Riemannian isoperimetric problem, Birkhäuser Basel, Progress in Mathematics, 2007. |
| [23] | G. Folland, E. Stein, Hardy spaces on homogeneous groups, Volume 28 of Mathematical Notes. Princeton University Press, Princeton, NJ 1982. |
| [24] |
P. C. Greiner, Spherical harmonics on the Heisenberg group, Can. Math. Bull., 23 (1980), 383–396. https://doi.org/10.4153/CMB-1980-057-9 doi: 10.4153/CMB-1980-057-9
|