Research article Special Issues

Dynamic analysis and multistability of a discontinuous Jerk-like system

  • Published: 29 May 2025
  • MSC : 34A36, 34D23, 34H10, 37G15

  • This paper introduces a novel Jerk-like system characterized by discontinuous vector fields along a codimension-1 switching surface. This system is capable of exhibiting both the existence and non-existence of equilibria in response to defined arbitrary functions. Non-smooth properties are investigated, which are essential for identifying and allowing rapid transient responses to dynamic events that influence the system's behaviors. The proposed discontinuous systems, which include both crossing and sliding solutions, are examined specifically for the detection of self-excited and hidden attractors. The dynamic characteristics of these systems are examined utilising the criteria for discontinuous solutions, the Poincarè return map, the spectrum of Lyapunov exponents, and bifurcation diagrams. The analysis reveals that incorporating the switching surface into Jerk-like subsystems alters the dimensions of the generated attractors. This alteration provides the necessary basis for the formation of period-doubling orbits that culminate in chaotic attractors. In the scenarios involving sliding motion within the proposed system, various attractors are identified that exhibit sensitive dependence not only on the initial conditions and parameter variations, but also on the interaction of the flow with the discontinuity surface. An interesting result indicates that the proposed novel Jerk system, which is distinguished by the absence of both real and virtual equilibria, reveals a family of periodic orbits in the sliding region surrounding the pseudo-equilibrium. The use of analytical solutions and numerical techniques successfully identifies a wide range of attractors, including periodic orbits, period-doubling phenomena, and chaotic behavior in both crossing and sliding modes.

    Citation: Thoraya N. Alharthi. Dynamic analysis and multistability of a discontinuous Jerk-like system[J]. AIMS Mathematics, 2025, 10(5): 12554-12575. doi: 10.3934/math.2025566

    Related Papers:

  • This paper introduces a novel Jerk-like system characterized by discontinuous vector fields along a codimension-1 switching surface. This system is capable of exhibiting both the existence and non-existence of equilibria in response to defined arbitrary functions. Non-smooth properties are investigated, which are essential for identifying and allowing rapid transient responses to dynamic events that influence the system's behaviors. The proposed discontinuous systems, which include both crossing and sliding solutions, are examined specifically for the detection of self-excited and hidden attractors. The dynamic characteristics of these systems are examined utilising the criteria for discontinuous solutions, the Poincarè return map, the spectrum of Lyapunov exponents, and bifurcation diagrams. The analysis reveals that incorporating the switching surface into Jerk-like subsystems alters the dimensions of the generated attractors. This alteration provides the necessary basis for the formation of period-doubling orbits that culminate in chaotic attractors. In the scenarios involving sliding motion within the proposed system, various attractors are identified that exhibit sensitive dependence not only on the initial conditions and parameter variations, but also on the interaction of the flow with the discontinuity surface. An interesting result indicates that the proposed novel Jerk system, which is distinguished by the absence of both real and virtual equilibria, reveals a family of periodic orbits in the sliding region surrounding the pseudo-equilibrium. The use of analytical solutions and numerical techniques successfully identifies a wide range of attractors, including periodic orbits, period-doubling phenomena, and chaotic behavior in both crossing and sliding modes.



    加载中


    [1] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 20 (1963), 130–141. https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2 doi: 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
    [2] S. Mangiarotti, M. Peyre, Y. Zhang, M. Huc, F. Roger, Y. Kerr, Chaos theory applied to the outbreak of Covid-19: An ancillary approach to decision-making in pandemic context, Epidemiol. Infect., 148 (2020), e95. https://doi.org/10.1017/S0950268820000990 doi: 10.1017/S0950268820000990
    [3] F. Scheck, Mechanics: from Newton's laws to deterministic chaos, 5 Eds., Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-05370-2
    [4] D. Toker, F. T. Sommer, M. D'Esposito, A simple method for detecting chaos in nature, Commun. Biol., 3 (2020), 11. https://doi.org/10.1038/s42003-019-0715-9 doi: 10.1038/s42003-019-0715-9
    [5] C. K. Volos, I. M. Kyprianidis, I. N. Stouboulos, Experimental demonstration of a chaotic cryptographic scheme, WSEAS Transactions on Circuits and Systems Archive, 5 (2006), 1654–1661.
    [6] A. A. Zaher, A. Abu-Rezq, On the design of chaos-based secure communication systems, Commun. Nonlinear Sci., 16 (2011), 3721–3737. https://doi.org/10.1016/j.cnsns.2010.12.032 doi: 10.1016/j.cnsns.2010.12.032
    [7] N. V. Kuznetsov, G. A. Leonov, V. I. Vagaitsev, Analytical-numerical method for attractor localization of generalized Chua's system, IFAC Proceedings Volumes, 43 (2010), 29–33. https://doi.org/10.3182/20100826-3-tr-4016.00009. doi: 10.3182/20100826-3-tr-4016.00009
    [8] G. A. Leonov, N. V. Kuznetsov, V. I. Vagaitsev, Localization of hidden Chua's attractors, Phys. Lett. A, 375 (2011), 2230–2233. https://doi.org/10.1016/j.physleta.2011.04.037 doi: 10.1016/j.physleta.2011.04.037
    [9] G. A. Leono, N. V. Kuznetsov, Hidden attractors in dynamical systems: From hidden oscillations in hilbert-kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits, Int. J. Bifurcat. Chaos, 23 (2013), 1330002. https://doi.org/10.1142/S0218127413300024 doi: 10.1142/S0218127413300024
    [10] H. A. Hosham, M. A. Aljohani, E. D. A. Elela, N. A. Almuallem, T. N. Alharthi, Hidden-like attractors in a class of discontinuous dynamical systems, Mathematics, 12 (2024), 3784. https://doi.org/10.3390/math12233784 doi: 10.3390/math12233784
    [11] S. Garai, S. Karmakar, S. Jafari, N. Pal, Coexistence of triple, quadruple attractors and Wada basin boundaries in a predator–prey model with additional food for predators, Commun. Nonlinear Sci., 121 (2023), 107208. https://doi.org/10.1016/j.cnsns.2023.107208 doi: 10.1016/j.cnsns.2023.107208
    [12] A. Dhooge, W. Govaerts, Y. A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs. ACM T. Math. Software, 29 (2003), 141–164. https://doi.org/10.1145/779359.779362
    [13] J. Lebl, Ordinary differential equations, In: Computational toxicology, Totowa: Humana Press, 2013,475–498. https://doi.org/10.1007/978-1-62703-059-5_20
    [14] R. H. Clewley, W. E. Sherwood, M. D. LaMar, J. M. Guckenheimer, PyDSTool, a software environment fo dynamical systems modeling, 2007. Available from: http://pydstool.sourceforge.net
    [15] V. Rybin, D. Butusov, K. Shirnin, V. Ostrovskii, Revealing hidden features of chaotic systems using high-performance bifurcation analysis tools based on cuda technology, Int. J. Bifurcat. Chaos, 34 (2024), 2450134. https://doi.org/10.1142/S0218127424501347 doi: 10.1142/S0218127424501347
    [16] D. Dantsev, A novel type of chaotic attractor for quadratic systems without equilibriums, Int. J. Bifurcat. Chaos, 28 (2018), 1850001. https://doi.org/10.1142/S0218127418500013 doi: 10.1142/S0218127418500013
    [17] A. P. Kuznetsov, S. P. Kuznetsov, E. Mosekilde, N. V. Stankevich, Co-existing hidden attractors in a radio-physical oscillator system, J. Phys. A: Math. Theor., 48 (2015), 125101. https://doi.org/10.1088/1751-8113/48/12/125101 doi: 10.1088/1751-8113/48/12/125101
    [18] S. N. Chowdhury, D. Ghosh, Hidden attractors: A new chaotic system without equilibria, Eur. Phys. J. Spec. Top., 229 (2020), 1299–1308. https://doi.org/10.1140/epjst/e2020-900166-7 doi: 10.1140/epjst/e2020-900166-7
    [19] J. P. Singh, V. T. Pham, T. Hayat, S. Jafari, F. E. Alsaadi, B. K. Roy, A new four-dimensional hyperjerk system with stable equilibrium point, circuit implementation, and its synchronization by using an adaptive integrator backstepping control, Chinese Phys. B, 27 (2018), 100501. https://doi.org/10.1088/1674-1056/27/10/100501 doi: 10.1088/1674-1056/27/10/100501
    [20] X. Wang, A. Akgul, S. Cicek, V. T. Pham, D. V. Hoang, A Chaotic system with two stable equilibrium points: dynamics, circuit realization and communication application, Int. J. Bifurcat. Chaos, 27 (2017), 1750130. https://doi.org/10.1142/S0218127417501309 doi: 10.1142/S0218127417501309
    [21] X. Wang, N. V. Kuznetsov, G. R. Chen, Chaotic systems with multistability and hidden attractors, Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-75821-9
    [22] P. C. Rech, Self-excited and hidden attractors in a multistable jerk system, Chaos Soliton. Fract., 164, (2022), 112614. https://doi.org/10.1016/j.chaos.2022.112614
    [23] X. Y. Hu, B. Sang, N. Wang, The chaotic mechanisms in some jerk systems, AIMS Mathematics, 7 (2022), 15714–15740. https://doi.org/10.3934/math.2022861 doi: 10.3934/math.2022861
    [24] H. A. Hosham, Nonlinear behavior of a novel switching jerk system, Int. J. Bifurcat. Chaos, 30 (2020), 2050202. https://doi.org/10.1142/S0218127420502028 doi: 10.1142/S0218127420502028
    [25] J. C. Sprott, Some simple chaotic jerk functions, Am. J. Phys., 65 (1997), 537–543. https://doi.org/10.1119/1.18585 doi: 10.1119/1.18585
    [26] J. C. Sprott, A new class of chaotic circuit, Phys. Lett. A, 266 (2000), 19–23. https://doi.org/10.1016/S0375-9601(00)00026-8 doi: 10.1016/S0375-9601(00)00026-8
    [27] J. X. Zhang, G. D. Li, H. P. Pan, X. K. Chen, Multi-scroll expansion of 3D and 4D Jerk systems and its DSP implement, Chinese J. Phys., 94 (2025), 627–649. https://doi.org/10.1016/j.cjph.2025.02.002 doi: 10.1016/j.cjph.2025.02.002
    [28] S. J. Linz, J. C. Sprott, Elementary chaotic flow, Phys. Lett. A, 259 (1999), 240–245. https://doi.org/10.1016/S0375-9601(99)00450-8
    [29] J. Awrejcewicz, C.-H. Lamarque, Bifurcation and chaos in nonsmooth mechanical systems, Singapore: World Scientific, 2003. https://doi.org/10.1142/5342
    [30] T. Küpper, H. A. Hosham, Reduction to invariant cones for non-smooth systems, Math. Comput. Simulat., 81 (2011), 980–995. https://doi.org/10.1016/j.matcom.2010.10.004 doi: 10.1016/j.matcom.2010.10.004
    [31] W. K. Zhou, T. T. Zhao, A. L. Wang, S. Y. Tang, Bifurcations and dynamics of a filippov epidemic model with nonlinear threshold control policy and medical-resource constraints, Chaos Soliton. Fract., 184 (2024), 114992. https://doi.org/10.1016/j.chaos.2024.114992 doi: 10.1016/j.chaos.2024.114992
    [32] M. Messias, R. P. Silva, Determination of nonchaotic behavior for some classes of polynomial Jerk equations. Int. J. Bifurcat. Chaos, 30 (2020), 2050117. https://doi.org/10.1142/S0218127420501175
    [33] J. R. M. Pone, V. K. Tamba, G. H. Kom, A. B. Tiedeu, Period-doubling route to chaos, bistability and antimononicity in a jerk circuit with quintic nonlinearity, Int. J. Dynam. Control, 7 (2019), 1–22. https://doi.org/10.1007/s40435-018-0431-1 doi: 10.1007/s40435-018-0431-1
    [34] Z. K. Li, X. B. Liu, Limit cycles in discontinuous piecewise Linear planar Hamiltonian systems without equilibrium points, Int. J. Bifurcat. Chaos, 32 (2022), 2250153. https://doi.org/10.1142/S021812742250153X doi: 10.1142/S021812742250153X
    [35] H. A. Hosham, T. N. Alharthi, Bifurcation and chaos in simple discontinuous systems separated by a hypersurface, AIMS Mathematics, 9 (2024), 17025–17038. https://doi.org/10.3934/math.2024826 doi: 10.3934/math.2024826
    [36] M. B. Laurea, A. R. Champneys, C. J. Budd, P. Kowalczyk, Piecewise-smooth dynamical systems: theory and applications, London: Springer, 2008. https://doi.org/10.1007/978-1-84628-708-4
    [37] M. Van, Higher-order terminal sliding mode controller for fault accommodation of Lipschitz second-order nonlinear systems using fuzzy neural network, Appl. Soft Comput., 104 (2021), 107186. https://doi.org/10.1016/j.asoc.2021.107186 doi: 10.1016/j.asoc.2021.107186
    [38] A. F. Filippov, Differential equations with discontinuous righthand sides: control Systems, Dordrecht: Springer, 1988. https://doi.org/10.1007/978-94-015-7793-9
    [39] R. I. Leine, D. H. van Campen, B. L. van de Vrande, Bifurcations in nonlinear discontinuous systems, Nonlinear Dyn., 23 (2000), 105–164. https://doi.org/10.1023/A:1008384928636 doi: 10.1023/A:1008384928636
    [40] M. E. Kahoui, A. Weber, Deciding Hopf bifurcations by quantifier elimination in a software-component architecture, J. Symb. Comput., 30 (2000), 161–179. https://doi.org/10.1006/jsco.1999.0353 doi: 10.1006/jsco.1999.0353
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(712) PDF downloads(27) Cited by(0)

Article outline

Figures and Tables

Figures(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog