Research article

A Faber-Krahn inequality for nonhomogeneous wedge-like membranes

  • Received: 02 November 2024 Revised: 12 April 2025 Accepted: 21 April 2025 Published: 23 May 2025
  • MSC : 35P15, 58E30

  • In this paper, we adapt B. Schwarz and Banks-Krein techniques to obtain a new version of Faber-Krahn inequality for the first Dirichlet eigenvalue of the Laplacian in wedge like membranes with continuous mass density function.

    Citation: Abdelhalim Hasnaoui, Abdelhamid Zaghdani. A Faber-Krahn inequality for nonhomogeneous wedge-like membranes[J]. AIMS Mathematics, 2025, 10(5): 11988-11997. doi: 10.3934/math.2025543

    Related Papers:

  • In this paper, we adapt B. Schwarz and Banks-Krein techniques to obtain a new version of Faber-Krahn inequality for the first Dirichlet eigenvalue of the Laplacian in wedge like membranes with continuous mass density function.



    加载中


    [1] J. W. S. B. Rayleigh, The theory of sound: In two volumes, Macmillan, 1896.
    [2] G. Faber, Beweiss, dass unter allen homogenen Membrane von gleicher Flache und gleicher Spannung die kreisfőrmige die tiefsten Grundton gibt, Sitzungsber. Bayer. Akad. Wiss., Math. Phys. Munich., 1923,169–172.
    [3] E. Krahn, Űber eine von Rayleigh formulierte Minmaleigenschaft des Kreises, Math. Ann., 94 (1925), 97–100. https://doi.org/10.1007/BF01208645 doi: 10.1007/BF01208645
    [4] B. Schwarz, Bounds for the principal frequency of the non-homogeneous membrane and for the generalized Dirichlet integral, Pacific J. Math., 7 (1957), 1653–1676. https://doi.org/10.2140/pjm.1957.7.1653 doi: 10.2140/pjm.1957.7.1653
    [5] L. E. Payne, H. F. Weinberger, A Faber-Krahn inequality for wedge-like membranes, J. Math. Phys., 39 (1960), 182–188. https://doi.org/10.1002/sapm1960391182 doi: 10.1002/sapm1960391182
    [6] G. A. Philippin, Some isoperimetric norm bounds for the first eigenfunction of wedge-like membranes, J. Appl. Math. Phys., 27 (1976), 545–551. https://doi.org/10.1007/BF01591165 doi: 10.1007/BF01591165
    [7] R. P. Sperb, Extension of an inequality of Pólya-Szegő to wedge-like domain, Z. Angew. Math. Phys., 44 (1981), 173–177. https://doi.org/10.1007/BF00914359 doi: 10.1007/BF00914359
    [8] J. Ratzkin, Eigenvalues of Euclidean wedge domains in higher dimensions, Calc. Var. Partial Differ. Equ., 42 (2011), 93–106. https://doi.org/10.1007/s00526-010-0381-8 doi: 10.1007/s00526-010-0381-8
    [9] A. Hasnaoui, L. Hermi, Isoperimetric inequalities for a wedge-like membrane, Ann. Henri Poincaré, 15 (2014), 369–406. https://doi.org/10.1007/s00023-013-0243-y doi: 10.1007/s00023-013-0243-y
    [10] A. Hasnaoui, A. Sboui, A sharp upper bound for the first Dirichlet eigenvalue of cone-like domains, Arch. Math., 115 (2020), 691–701. https://doi.org/10.1007/s00013-020-01499-4 doi: 10.1007/s00013-020-01499-4
    [11] A. Hasnaoui, L. Hermi, A sharp upper bound for the first Dirichlet eigenvalue of a class of wedge-like domains, Z. Angew. Math. Phys., 66 (2015), 2419–2440. https://doi.org/10.1007/s00033-015-0530-1 doi: 10.1007/s00033-015-0530-1
    [12] L. E. Payne, Isoperimetric inequalities for eigenvalue and their applications, Berlin: Springer, 27 (1962), 107–167. https://doi.org/10.1007/978-3-642-10994-2_3
    [13] D. O. Banks, Bounds for the eigenvalues of some vibrating systems, Pacific J. Math., 10 (1960), 439–474. http://dx.doi.org/10.2140/pjm.1960.10.439 doi: 10.2140/pjm.1960.10.439
    [14] R. S. Laugesen, Eigenvalues of the Laplacian on inhomogeneous membranes, Am. J. Math., 120 (1998), 305–344. http://dx.doi.org/10.1353/ajm.1998.0013 doi: 10.1353/ajm.1998.0013
    [15] M. G. Krein, On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability, Amer. Math. Soc. Trans., 1 (1955), 163–187. https://doi.org/10.1090/trans2/001 doi: 10.1090/trans2/001
    [16] C. Bandle, Isoperimetric inequalities and applications, Boston: Pitman, 1980.
    [17] Z. Nehari, On the principal frequency of a membrane, Pacific J. Math., 8 (1958), 285–293. http://dx.doi.org/10.2140/pjm.1958.8.285 doi: 10.2140/pjm.1958.8.285
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(770) PDF downloads(38) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog