In this paper, we adapt B. Schwarz and Banks-Krein techniques to obtain a new version of Faber-Krahn inequality for the first Dirichlet eigenvalue of the Laplacian in wedge like membranes with continuous mass density function.
Citation: Abdelhalim Hasnaoui, Abdelhamid Zaghdani. A Faber-Krahn inequality for nonhomogeneous wedge-like membranes[J]. AIMS Mathematics, 2025, 10(5): 11988-11997. doi: 10.3934/math.2025543
In this paper, we adapt B. Schwarz and Banks-Krein techniques to obtain a new version of Faber-Krahn inequality for the first Dirichlet eigenvalue of the Laplacian in wedge like membranes with continuous mass density function.
| [1] | J. W. S. B. Rayleigh, The theory of sound: In two volumes, Macmillan, 1896. |
| [2] | G. Faber, Beweiss, dass unter allen homogenen Membrane von gleicher Flache und gleicher Spannung die kreisfőrmige die tiefsten Grundton gibt, Sitzungsber. Bayer. Akad. Wiss., Math. Phys. Munich., 1923,169–172. |
| [3] |
E. Krahn, Űber eine von Rayleigh formulierte Minmaleigenschaft des Kreises, Math. Ann., 94 (1925), 97–100. https://doi.org/10.1007/BF01208645 doi: 10.1007/BF01208645
|
| [4] |
B. Schwarz, Bounds for the principal frequency of the non-homogeneous membrane and for the generalized Dirichlet integral, Pacific J. Math., 7 (1957), 1653–1676. https://doi.org/10.2140/pjm.1957.7.1653 doi: 10.2140/pjm.1957.7.1653
|
| [5] |
L. E. Payne, H. F. Weinberger, A Faber-Krahn inequality for wedge-like membranes, J. Math. Phys., 39 (1960), 182–188. https://doi.org/10.1002/sapm1960391182 doi: 10.1002/sapm1960391182
|
| [6] |
G. A. Philippin, Some isoperimetric norm bounds for the first eigenfunction of wedge-like membranes, J. Appl. Math. Phys., 27 (1976), 545–551. https://doi.org/10.1007/BF01591165 doi: 10.1007/BF01591165
|
| [7] |
R. P. Sperb, Extension of an inequality of Pólya-Szegő to wedge-like domain, Z. Angew. Math. Phys., 44 (1981), 173–177. https://doi.org/10.1007/BF00914359 doi: 10.1007/BF00914359
|
| [8] |
J. Ratzkin, Eigenvalues of Euclidean wedge domains in higher dimensions, Calc. Var. Partial Differ. Equ., 42 (2011), 93–106. https://doi.org/10.1007/s00526-010-0381-8 doi: 10.1007/s00526-010-0381-8
|
| [9] |
A. Hasnaoui, L. Hermi, Isoperimetric inequalities for a wedge-like membrane, Ann. Henri Poincaré, 15 (2014), 369–406. https://doi.org/10.1007/s00023-013-0243-y doi: 10.1007/s00023-013-0243-y
|
| [10] |
A. Hasnaoui, A. Sboui, A sharp upper bound for the first Dirichlet eigenvalue of cone-like domains, Arch. Math., 115 (2020), 691–701. https://doi.org/10.1007/s00013-020-01499-4 doi: 10.1007/s00013-020-01499-4
|
| [11] |
A. Hasnaoui, L. Hermi, A sharp upper bound for the first Dirichlet eigenvalue of a class of wedge-like domains, Z. Angew. Math. Phys., 66 (2015), 2419–2440. https://doi.org/10.1007/s00033-015-0530-1 doi: 10.1007/s00033-015-0530-1
|
| [12] | L. E. Payne, Isoperimetric inequalities for eigenvalue and their applications, Berlin: Springer, 27 (1962), 107–167. https://doi.org/10.1007/978-3-642-10994-2_3 |
| [13] |
D. O. Banks, Bounds for the eigenvalues of some vibrating systems, Pacific J. Math., 10 (1960), 439–474. http://dx.doi.org/10.2140/pjm.1960.10.439 doi: 10.2140/pjm.1960.10.439
|
| [14] |
R. S. Laugesen, Eigenvalues of the Laplacian on inhomogeneous membranes, Am. J. Math., 120 (1998), 305–344. http://dx.doi.org/10.1353/ajm.1998.0013 doi: 10.1353/ajm.1998.0013
|
| [15] |
M. G. Krein, On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability, Amer. Math. Soc. Trans., 1 (1955), 163–187. https://doi.org/10.1090/trans2/001 doi: 10.1090/trans2/001
|
| [16] | C. Bandle, Isoperimetric inequalities and applications, Boston: Pitman, 1980. |
| [17] |
Z. Nehari, On the principal frequency of a membrane, Pacific J. Math., 8 (1958), 285–293. http://dx.doi.org/10.2140/pjm.1958.8.285 doi: 10.2140/pjm.1958.8.285
|