Research article

A multi-strategy upgraded Harris Hawk optimization algorithm for solving nonlinear inequality constrained optimization problems

  • Published: 22 May 2025
  • MSC : 68W50, 90C30

  • This study presented an upgraded version of the Harris Hawk optimization algorithm (UHHO) designed to overcome the inherent limitations of the original algorithm, especially in solving nonlinear constrained optimization problems that tend to converge prematurely and fall into local optima. First, the initial population generated in a random way was replaced by a good point set strategy. Second, we replaced the linear strategy with a nonlinear strategy in the intermediate stage in order to optimize the global search process. Furthermore, the sine-cosine strategy and L-C cascade chaos strategy were introduced in the development stage to perturb the population's position. This aimed to better explore the neighborhood of Harris Hawk optimal individuals in depth, enhance the local search ability of the algorithm, and avoid the algorithm falling into local optima. Some numerical experiments for solving nonlinear inequality constrained optimization problems are presented at the end of this paper. The simulation results show that the multi-strategy upgraded Harris Hawk algorithm can effectively avoid the problem of the standard Harris Hawk optimization algorithm falling into local optima.

    Citation: Juhe Sun, Guolin Huang, Li Wang, Chuanjun Yin, Ning Ma. A multi-strategy upgraded Harris Hawk optimization algorithm for solving nonlinear inequality constrained optimization problems[J]. AIMS Mathematics, 2025, 10(5): 11783-11812. doi: 10.3934/math.2025533

    Related Papers:

  • This study presented an upgraded version of the Harris Hawk optimization algorithm (UHHO) designed to overcome the inherent limitations of the original algorithm, especially in solving nonlinear constrained optimization problems that tend to converge prematurely and fall into local optima. First, the initial population generated in a random way was replaced by a good point set strategy. Second, we replaced the linear strategy with a nonlinear strategy in the intermediate stage in order to optimize the global search process. Furthermore, the sine-cosine strategy and L-C cascade chaos strategy were introduced in the development stage to perturb the population's position. This aimed to better explore the neighborhood of Harris Hawk optimal individuals in depth, enhance the local search ability of the algorithm, and avoid the algorithm falling into local optima. Some numerical experiments for solving nonlinear inequality constrained optimization problems are presented at the end of this paper. The simulation results show that the multi-strategy upgraded Harris Hawk algorithm can effectively avoid the problem of the standard Harris Hawk optimization algorithm falling into local optima.



    加载中


    [1] H. Faris, A. M. Al-Zoubi, A. A. Heidari, I. Aljarah, M. Mafarja, M. A. Hassonah, et al., An intelligent system for spam detection and identification of the most relevant features based on evolutionary Random Weight Networks, Inform. Fusion, 48 (2019), 67–83. https://doi.org/10.1016/j.inffus.2018.08.002 doi: 10.1016/j.inffus.2018.08.002
    [2] R. Abbassi, A. Abbassi, A. A. Heidari, S. Mirjalili, An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models, Energ. Convers. Manage, 179 (2019), 362–372. https://doi.org/10.1016/j.enconman.2018.10.069 doi: 10.1016/j.enconman.2018.10.069
    [3] G. H. Wu, Across neighborhood search for numerical optimization, Inform. Sci., 329 (2016), 597–618. https://doi.org/10.1016/j.ins.2015.09.051 doi: 10.1016/j.ins.2015.09.051
    [4] J. Nocedal, S. J. Wright, Numerical optimization, New York: Springer, 2006. https://doi.org/10.1007/978-0-387-40065-5
    [5] V. S. Mikhalevich, I. V. Sergienko, N. Z. Shor, Investigation of optimization methods and their applications, Cybern. Syst. Anal., 17 (1981), 522–548. https://doi.org/10.1007/BF01082482 doi: 10.1007/BF01082482
    [6] X. S. Xiang, Y. Tian, X. Y. Zhang, J. H. Xiao, Y. C. Jin, A pairwise proximity learning-based ant colony algorithm for dynamic vehicle routing problems, IEEE T. Intell. Transp., 23 (2022), 5275–5286. https://doi.org/10.1109/TITS.2021.3052834 doi: 10.1109/TITS.2021.3052834
    [7] M. B. Ghanamijaber, A hybrid fuzzy-PID controller based on gray wolf optimization algorithm in power system, Evol. Syst., 10 (2019), 273–284. https://doi.org/10.1007/s12530-018-9228-x doi: 10.1007/s12530-018-9228-x
    [8] A. Raza, M. Zhong, Hybrid lane-based short-term urban traffic speed forecasting: A genetic approach, In: 2017 4th International Conference on Transportation Information and Safety (ICTIS), 2017,271–279. https://doi.org/10.1109/ICTIS.2017.8047776
    [9] M. Dorigo, G. D. Caro, Ant colony optimization: a new meta-heuristic, In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1999. https://doi.org/10.1109/CEC.1999.782657
    [10] T. M. Shami, A. A. El-Saleh, M. Alswaitti, M. Alswaitti, Q. Al-Tashi, M. A. Summakieh, et al., Particle swarm optimization: A comprehensive survey, IEEE Access, 10 (2022), 10031–10061. https://doi.org/10.1109/ACCESS.2022.3142859 doi: 10.1109/ACCESS.2022.3142859
    [11] P. J. Denning, Genetic algorithms, Am. Sci., 80 (1992), 12–14.
    [12] X. S. Yang, Firefly algorithms for multimodal optimization, In: Stochastic algorithms: Foundations and applications, 2009. https://doi.org/10.1007/978-3-642-04944-6_14
    [13] Z. D. Wang, L. L. Huang, S. X. Yang, D. H. Li, D. J. He, S. Chan, A quasi-oppositional learning of updating quantum state and Q-learning based on the dung beetle algorithm for global optimization, Alex. Eng. J., 81 (2023), 469–488. https://doi.org/10.1016/j.aej.2023.09.042 doi: 10.1016/j.aej.2023.09.042
    [14] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. L. Chen, Harris Hawks optimization: Algorithm and applications, Future Gener. Comp. Sy., 97 (2019), 849–872. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028
    [15] M. Issa, A. Samn, Passive vehicle suspension system optimization using Harris Hawk Optimization algorithm, Math. Comput. Simul., 191 (2022), 328–345. https://doi.org/10.1016/j.matcom.2021.08.016 doi: 10.1016/j.matcom.2021.08.016
    [16] K. Balakrishnan, R. Dhanalakshmi, U. M. Khaire, A novel control factor and Brownian motion-based improved Harris Hawks optimization for feature selection, J. Ambient Intell. Human. Comput., 14 (2023), 8631–8653. https://doi.org/10.1007/s12652-021-03621-y doi: 10.1007/s12652-021-03621-y
    [17] M. H. Qais, H. M. Hasanien, S. Alghuwainem, Paraments extraction of three-diode photovoltaic model using computation and Harris Hawks optimization, Energy, 195 (2020), 117040. https://doi.org/10.1016/j.energy.2020.117040 doi: 10.1016/j.energy.2020.117040
    [18] S. Barshandeh, F. Piri, S. R. Sangani, HMPA: An innovative hybrid multi-population algorithm based on artificial ecosystem-based and Harris Hawks optimization algorithms for engineering problems, Eng. Comput., 38 (2022), 1581–1625. https://doi.org/10.1007/s00366-020-01120-w doi: 10.1007/s00366-020-01120-w
    [19] Y. X. Chen, X. M. Liang, Y. F. Huang, Improved quantum particle swarm optimization based on good-point set, J. Cent. South Univ. (Sci. Technol.), 44 (2013), 1409–1414.
    [20] L. Z. Duan, S. Q. Yang, D. B. Zhang, The optimization of feature selection based on chaos clustering strategy and niche particle swarm optimization, Math. Probl. Eng., 2020 (2020), 3138659. https://doi.org/10.1155/2020/3138659 doi: 10.1155/2020/3138659
    [21] G. Y. Wang, F. Yuan, Cascade chaos and its dynamic characteristics, Acta Phys. Sin., 62 (2013), 020506. https://doi.org/10.7498/aps.62.020506 doi: 10.7498/aps.62.020506
    [22] J. H Huang, Application of optimization design methods to mechanics of materials, J. Jimei Univ. (Nat. Sci. Ed.), 02 (1999), 33–37. https://doi.org/10.19715/j.jmuzr.1999.02.007 doi: 10.19715/j.jmuzr.1999.02.007
    [23] T. Ray, P. Saini, Engineering design optimization using a swarm with an intelligent information sharing among individuals, Eng. Optim., 33 (2001), 735–748. https://doi.org/10.1080/03052150108940941 doi: 10.1080/03052150108940941
    [24] A. Sadollah, A. Bahreininejad, H. Eskandar, M. Hamdi, Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems, Appl. Soft Comput., 13 (2013), 2592–2612. https://doi.org/10.1016/j.asoc.2012.11.026 doi: 10.1016/j.asoc.2012.11.026
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1153) PDF downloads(30) Cited by(1)

Article outline

Figures and Tables

Figures(30)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog