Research article

A study of $ (m, q) $-isometric multimappings in the context of $ \mathcal{G} $-metric spaces

  • Published: 19 May 2025
  • MSC : 47B99, 54E40

  • This paper introduces and explores new concepts of $ (m, q) $-isometric multimappings in the context of extended metric structures. These newly defined concepts serve as extensions of the existing theory of $ (m, q) $-isometric multimappings in traditional metric spaces, as well as $ (m, q) $-$ \mathcal{G} $-isometric single mappings in generalized metric spaces. The study aims to broaden the understanding of isometric multimappings properties and their interactions within these extended spaces.

    Citation: Hadi Obaid Alshammari, Abdulrahman Obaid Alshammari. A study of $ (m, q) $-isometric multimappings in the context of $ \mathcal{G} $-metric spaces[J]. AIMS Mathematics, 2025, 10(5): 11369-11381. doi: 10.3934/math.2025517

    Related Papers:

  • This paper introduces and explores new concepts of $ (m, q) $-isometric multimappings in the context of extended metric structures. These newly defined concepts serve as extensions of the existing theory of $ (m, q) $-isometric multimappings in traditional metric spaces, as well as $ (m, q) $-$ \mathcal{G} $-isometric single mappings in generalized metric spaces. The study aims to broaden the understanding of isometric multimappings properties and their interactions within these extended spaces.



    加载中


    [1] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297.
    [2] J. Agler, M. Stankus, $m$-isometric transformations of Hilbert space, Ⅰ, Integr. Equ. Oper. Theory, 21 (1995), 383–429. https://doi.org/10.1007/BF01222016 doi: 10.1007/BF01222016
    [3] K. Gherairi, Z. Hajjej, H. Li, H. Regeiba, $n$-quasi-A-$(m, q)$-isometry on a Banach space, AIMS Mathematics, 8 (2023), 28308–28321. https://doi.org/10.3934/math.20231448 doi: 10.3934/math.20231448
    [4] S. Mecheri, T. Prasad, On $n$-quasi-$m$-isometric operators, Asian-Eur. J. Math., 9 (2016), 1650073. https://doi.org/10.1142/S179355711650073X doi: 10.1142/S179355711650073X
    [5] R. P. Agarwal, E. Karapƒ±nar, F. Khojasteh, Ćirić and Meir-Keeler fixed point results in super metric spaces, Appl. Set-Valued Anal. Optim., 4 (2022), 271–275. https://doi.org/10.23952/asvao.4.2022.3.02 doi: 10.23952/asvao.4.2022.3.02
    [6] Y. Hao, J. Gou, H. Guan, The uniqueness of fixed points for two new classes of contractive mappings of integral type in b-metric spaces, J. Nonlinear Funct. Anal., 2024 (2024), 30. https://doi.org/10.23952/jnfa.2024.30 doi: 10.23952/jnfa.2024.30
    [7] H. M. Srivastava, Some families of generalized elliptic-type integrals and the associated multiple hypergeometric functions, J. Nonlinear Var. Anal., 8 (2024), 771–786. https://doi.org/10.23952/jnva.8.2024.5.05 doi: 10.23952/jnva.8.2024.5.05
    [8] T. Bermúdez, A. Martinón, V. Muller, $(m, q)$-isometries on metric spaces, J. Oper. Theory, 72 (2014), 313–328. https://doi.org/10.7900/jot.2013jan29.1996 doi: 10.7900/jot.2013jan29.1996
    [9] O. A. Mahmoud Sid Ahmed, M. Chō, J. E. Lee, $(m, q)$-isometric and $(m, \infty)$-isometric tuples of commutative mappings on a metric space, Filomat, 34 (2020), 2425–2437. https://doi.org/10.2298/FIL2007425M doi: 10.2298/FIL2007425M
    [10] A. M. A. Al-Ahmadi, Quaternion-generalized metric spaces $m$-quaternion-valued and $\mathcal{G}$-isometric mappings, Int. J. Pure Appl. Math., 116 (2017), 875–897.
    [11] O. A. Mahmoud Sid Ahmed, M. Chō, J. E. Lee, On $(m, C)$-isometric commuting tuples of operators on a Hilbert space, Results Math., 73 (2018), 51. https://doi.org/10.1007/s00025-018-0810-0 doi: 10.1007/s00025-018-0810-0
    [12] P. H. W. Hoffmann, M. Mackey, $(m, p)$-isometric and $(m, \infty)$-isometric operator tuples on normed spaces, Asian-Eur. J. Math., 8 (2015), 1550022. https://doi.org/10.1142/S1793557115500229 doi: 10.1142/S1793557115500229
    [13] O. A. Mahmoud Sid Ahmed, On $(m, p)$-(hyper)expansive and $(m, p)$-(hyper)contractive mappings on a metric space, J. Inequal. Spec. Funct., 7 (2016), 73–87.
    [14] O. B. Sid Ahmed, H. J. Sidi, O. A. Mahmoud Sid Ahmed, $\psi(m, q)$-isometric mappings on metric spaces, Aust. J. Math. Anal. Appl., 17 (2020), 20.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(577) PDF downloads(36) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog