Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

A study of (m,q)-isometric multimappings in the context of G-metric spaces

  • Received: 29 January 2025 Revised: 22 April 2025 Accepted: 07 May 2025 Published: 19 May 2025
  • MSC : 47B99, 54E40

  • This paper introduces and explores new concepts of (m,q)-isometric multimappings in the context of extended metric structures. These newly defined concepts serve as extensions of the existing theory of (m,q)-isometric multimappings in traditional metric spaces, as well as (m,q)-G-isometric single mappings in generalized metric spaces. The study aims to broaden the understanding of isometric multimappings properties and their interactions within these extended spaces.

    Citation: Hadi Obaid Alshammari, Abdulrahman Obaid Alshammari. A study of (m,q)-isometric multimappings in the context of G-metric spaces[J]. AIMS Mathematics, 2025, 10(5): 11369-11381. doi: 10.3934/math.2025517

    Related Papers:

    [1] Khadija Gherairi, Zayd Hajjej, Haiyan Li, Hedi Regeiba . Some properties of n-quasi-(m,q)-isometric operators on a Banach space. AIMS Mathematics, 2023, 8(12): 31246-31257. doi: 10.3934/math.20231599
    [2] Hadi Obaid Alshammari . Higher order hyperexpansivity and higher order hypercontractivity. AIMS Mathematics, 2023, 8(11): 27227-27240. doi: 10.3934/math.20231393
    [3] Umar Ishtiaq, Fahad Jahangeer, Doha A. Kattan, Manuel De la Sen . Generalized common best proximity point results in fuzzy multiplicative metric spaces. AIMS Mathematics, 2023, 8(11): 25454-25476. doi: 10.3934/math.20231299
    [4] Shaoyuan Xu, Yan Han, Suzana Aleksić, Stojan Radenović . Fixed point results for nonlinear contractions of Perov type in abstract metric spaces with applications. AIMS Mathematics, 2022, 7(8): 14895-14921. doi: 10.3934/math.2022817
    [5] Maide Gökșin Taș, Duran Türkoğlu, Ishak Altun . Fixed point results for P-contractive mappings on M-metric space and application. AIMS Mathematics, 2024, 9(4): 9770-9784. doi: 10.3934/math.2024478
    [6] Sharief Deshmukh, Amira Ishan, Olga Belova . On eigenfunctions corresponding to first non-zero eigenvalue of the sphere Sn(c) on a Riemannian manifold. AIMS Mathematics, 2024, 9(12): 34272-34288. doi: 10.3934/math.20241633
    [7] Muhammad Nazam, Aftab Hussain, Asim Asiri . On a common fixed point theorem in vector-valued b-metric spaces: Its consequences and application. AIMS Mathematics, 2023, 8(11): 26021-26044. doi: 10.3934/math.20231326
    [8] Sourav Shil, Hemant Kumar Nashine . Positive definite solution of non-linear matrix equations through fixed point technique. AIMS Mathematics, 2022, 7(4): 6259-6281. doi: 10.3934/math.2022348
    [9] Muhammad Tariq, Mujahid Abbas, Aftab Hussain, Muhammad Arshad, Amjad Ali, Hamid Al-Sulami . Fixed points of non-linear set-valued (α,ϕM)-contraction mappings and related applications. AIMS Mathematics, 2022, 7(5): 8861-8878. doi: 10.3934/math.2022494
    [10] Meena Joshi, Anita Tomar, Thabet Abdeljawad . On fixed points, their geometry and application to satellite web coupling problem in Smetric spaces. AIMS Mathematics, 2023, 8(2): 4407-4441. doi: 10.3934/math.2023220
  • This paper introduces and explores new concepts of (m,q)-isometric multimappings in the context of extended metric structures. These newly defined concepts serve as extensions of the existing theory of (m,q)-isometric multimappings in traditional metric spaces, as well as (m,q)-G-isometric single mappings in generalized metric spaces. The study aims to broaden the understanding of isometric multimappings properties and their interactions within these extended spaces.



    The idea of a generalized metric has been previously established in [1] as follows.

    Let E be a set (E)) and let G:E×E×ER+ be a map for which:

    (1) G(ω,ψ,φ)=0 if ω=ψ=φ,

    (2) 0<G(ω,ω,ψ) for all ω,ψE with ωψ,

    (3) G(ω,ω,ψ)G(ω,ψ,φ) for all ω,ψ,φE with ψφ,

    (4) G(ω,ψ,φ)=G(ω,φ,ψ)=G(ψ,φ,ω)=...

    (5) G(ω,ψ,φ)G(ω,a,a)+G(a,ψ,φ) for all ω,ψ,φ,aE.

    Then the map G is called a generalized metric, or a G-metric on E, and (E,G) is called a G-metric space. In the following, we denote by (E,d) and (E,G) a metric space and a G-metric space, respectively. In recent years, the class of m-isometric operators and the related class of n-quasi- m-isometric operators in both Hilbert and Banach spaces have attracted significant attention. These operators have been extensively studied by numerous researchers, leading to a wealth of contributions in the literature that explore their structural properties, spectral properties, and various applications in functional analysis [2,3,4]. Over the years, a significant body of research has emerged, extending classical fixed-point theorems to a wide array of generalized metric spaces, including b-metric spaces, partial metric spaces, G-metric spaces, and others. These generalizations not only enrich the theoretical landscape but also enhance the applicability of fixed-point results to real-world problems where traditional metric assumptions may not hold [5,6,7].

    In this work, our motivation in studying m-isometries within the context of G-metric spaces lies in bridging these two powerful concepts. While m-isometries have been extensively investigated in Hilbert and Banach spaces, their behavior and properties in G-metric settings remain relatively unexplored. By extending the theory of m-isometries to G-metric spaces, we aim to uncover new fixed-point results, deepen the theoretical understanding of operator behavior in generalized metric structures, and open new avenues for applications in nonlinear analysis and related fields.

    The concept of m-isometries, originally studied in Banach spaces, has been extended to the setting of metric spaces. This generalization has provided new insights into the geometric and structural properties of metric spaces, leading to further developments in nonlinear analysis and fixed-point theory.

    The concept of (m,q)-isometric maps on a metric space was introduced and studied in [8]. A map W:(E,d)(E,d) is called an (m,q)-isometry if

    0km(1)k(mk)d(Wmkω,Wmkψ)q=0 (1.1)

    for all ω,ψE and for some mN and q(0,)). (1,q)-isometries W coincide with isometries: d(Wω,Wψ)=d(ω,ψ) for all ω,ψE. When E is a normed space, (1.1) coincides with

    0km(1)k(mk)Wmkωq=0. (1.2)

    This definition has been extended to commutative multivariable mappings on a metric space by the authors Sid Ahmed et al.[9]. Let W=(W1,,Wp) be a commutative mapping where Wj:EE for j=1,,p. W is said to be an (m,q)-isometric commutative tuple of mappings if W satisfies

    0km(1)mk(mk)(|γ|=kk!γ!d(Wγω,Wγψ)q)=0, (1.3)

    for all ω,ψE. When E is a normed space, (1.3) coincides with

    0km(1)mk(mk)(|γ|=kk!γ!Wγωq)=0. (1.4)

    Consider the map Λ(q)k(W;.,.,.):E×E×ER by

    Λk(W;ω,ψ,φ):=0jk(1)kj(kj)G(Wjω,Wjψ,Wjφ)q,ω,ψ,φE. (1.5)

    In [10] the author considers a generalization of the concept of (m,q)-isometric mappings in metric space to (m,q)-isometric mappings in G-metric space. A map W:(E,G)(E,G) is said to be an (m,q)-G-isometric if it satisfies

    0jm(1)mj(mj)G(Wjω,Wjψ,Wjφ)q=0,ω,ψ,φE.

    The paper introduces a parallel extension of the study of m-isometric commuting mappings from metric spaces to the more general setting of general metric spaces, offering new perspectives on their structural properties. Several results established in Banach and Hilbert spaces to the broader framework of generalized metric spaces. Our motivation stems from the need to explore whether key properties of m-isometries are retained or need to be modified when extended to broader classes of spaces, especially in light of applications in nonlinear analysis, fixed point theory, and geometric group theory, where general metric spaces naturally arise.

    Let Wj:(E,G)(E,G) be a map for j=1,,p and consider W=(W1,,Wp) where WkWj=WjWk. For ω,ψ,φE, we write

    Q(q)l(W;ω,ψ,φ):=0kl(1)lk(lk)(|α|=kk!α!G(Wαω,Wαψ,Wαφ)q). (2.1)

    We begin by presenting the definition of the multimappings that will be central to the theoretical developments in this paper.

    Definition 2.1. The tuple W=(W1,,Wp) is called an (m,q)-G-isometric multimapping if

    0km(1)mk(mk)(|α|=kk!α!G(Wαω,Wαψ,Wαφ)q)=0, (2.2)

    for all ω,ψ,φE.

    We designate by [(m,q)ISO]p[(E,G)] the set of (m,q)-G-isometric p-tuples on (E.G).

    Remark 2.1. (ⅰ) When p=1, (2.2) was formalized in [10].

    Remark 2.2. (ⅰ) W=(W1,W2)[(1,q)ISO]2[(E,G)] if

    G(W1ω,W1ψ,W1φ)q+G(W2ω,W2ψ,W2φ)q=G(ω,ψ,φ)q for allω,ψ,φE

    and W is a (2,q)-G-isometric pair if

    G(W21ω,W21ψ,W21φ)q+G(W22ω,W22ψ,W22φ)q+2G(W1W2ω,W1W2ψ,W1W2φ)q2G(W1ω,W1ψ,W1φ)q2G(W2ω,W2ψ,W2φ)q+G(ω,ψ,φ)q=0

    for all ω,ψ,φE.

    (ⅱ) W=(W1,,Wp) is a (1,q)-G-isometric pair if

    1kpG(Wkω,Wkψ,Wkφ)qG(ω,ψ,φ)q=0 for allω,ψ,φE

    and W[(2,q)ISO]2[(E,G)] if for all ω,ψ,φE,

    1kpG(W2kω,W2kψ,2kφ)q+21i<kpG(WiWkω,WiWkψ,WiWkφ)q21kpG(Wkω,Wkψ,Wkφ)q+G(ω,ψφ)q=0.

    (ⅲ) W=(W1,,Wp) is a (3,q)- G-isometric multimappings if

    1jpG(W3jx,W3jy,W3jφ)q+31ijpG(WiW2jω,WiW2jψ,WiW2jφ)q+61ijrpG(WiWjWrω,WiWjWrψ,WiWjWrφ)q31jpG(W2jω,W2jψ,W2jφ)q61ijpG(WjWiω,WjWiψ,WjWiφ)q+31jpG(Wjω,Wjψ,Wjφ)qG(ω,ψ,φ)q=0 for allω,ψ,φE.

    Example 2.1. Let (R,G0) be a G-metric space, where G0(ω,ψ,φ)=|ωψ|q+|ωφ|q+|ψφ|q.

    Define the map W0:(R,G0)(R,G0) to be an (m,q)-G-isometric map. Then the tuple W=(W1,,Wp), where Wj=1qpW0 for q>0, j=1,,p, is an (m,q)-G-isometric multimapping. Indeed, we have

    0kl(1)lk(lk)(|α|=kk!α!G0(Wαω,Wαψ,Wαφ)q)=0kl(1)lk(lk)(|α|=kk!α!G0((1qp)|α|W|α|0ω,(1qp)|α|W|α|0ψ,(1qp)|α|W|α|0φ)q)=0kl(1)lk(lk)(|α|=kk!α!(1qp)q|α|G0(W|α|0ω,W|α|0ψ,W|α|0φ)q)=0kl(1)lk(lk)(|α|=kk!α!1pkG0(Wk0ω,Wk0ψ,Wk0φ)q)==0kl(1)lk(lk)G0(Wk0ω,Wk0ψ,Wk0φ)q=0.

    Remark 2.3. From the above example, it has been observed that the result, which was proven in [8, Proposition 1.4] for a single map, does not hold true in general for a tuple of mappings.

    Proposition 2.1. Let W=(W1,,Wp), where Wk:(E,G)(E,G) is a map. Then for all m1, q(0,) and ω,ψ,φE the following hold.

    Q(q)m+1(W;ω,ψ,φ)=1knQ(q)m(W;Wkω,Wkψ,Wkφ)Q(q)m(W;ω,ψ,φ). (2.3)

    In particular, if W[(m,q)ISO]p[(E,G)], then W[(k,q)ISO]p[(E,G)] for all km.

    Proof. According to (2.1), a straightforward calculation shows that

    Q(q)m+1(W;ω,ψ,φ)=0km+1(1)m+1k(m+1k)|α|=kk!α!G(Wαω,Wαψ,Wαφ)q=(1)m+1G(ω,ψ,φ)q1km(1)mk[(mk)+(mk1)]|α|=kk!α!G(Wαω,Wαψ,Wαφ)q+|α|=m+1(m+1)!α!G(Wαω,Wαψ,Wαφ)q=Q(q)m(W;ω,ψ,φ)+0km1(1)mk(mk)|α|=k+1(k+1)!α!G(Wαω,Wαψ,Wαφ)q+|α|=m+1(m+1)!α!G(Wαω,Wαψ,Wαφ)q=Q(q)m(W;ω,ψ,φ)+0km1(1)mk(mk)|α|=k+1k!(α1++αn)α1!α2!αn!G(Wαω,Wαψ,Wαφ)q+|α|=m+1m!(α1++αn)α1!α2!αp!G(Wαω,Wαψ,Wαφ)q=Q(q)m(W;ω,ψ,φ)+1jp0km1(1)mk(mk)|α|=k+1k!αjα1!α2!αp!G((Wα11Wαj1jWαj+1j+1WαnpΘWjω),(Wα11Wαj1jWαj+1j+1WαnnWjψ),ΘWjφ))q+1jp |α|=m+1m!αjα1!α2!αp!G(Wα11Wαj1jWαj+1j+1WαnnΘWjω,Wα11Wαj1jWαj+1j+1WαppWjφ,ΘWjφ)q=Q(q)m(W;ω,ψ,φ)+1jn 0km1(1)mk(mk) |α|=kk!α!G(WαWjω,WαWjψ,WαWjφ)q+1jn |α|=mm!α!G(WαWjω,WαWjψ,WαWjφ)q=Q(q)m(W;ω,ψ,φ)+1jp(0km(1)mk(mk)|α|=kk!α!G(WαWjω,WαWjψ,WαWjφ)q)=Q(q)m(W;ω,ψ,φ)+1jpQ(q)m(W;Wjω,Wjψ,Wjφ),

    and so (2.3) is satisfied. Given that W[(m,q)ISO]p[(E,G)], it follows that W is also in [(k,q)ISO]p[(E,G)] for km. This conclusion is directly supported by Eq (2.3).

    The following theorem generalizes [11, Theorem 2.1].

    Theorem 2.1. Let W=(W1,,Wp), where Wk:(E,G)(E,G) is a map. The following statements are then true:

    (ⅰ)

    |α|=rr!α!G(Wαω,Wαψ,Wαφ)q=0jr(rj)Q(q)j(W;ω,ψ,φ), (2.4)

    for every r1,q>0 and ω,ψ,φE.

    (ⅲ) W[(m,q)ISO]p[(E,G)] if and only if

    |α|=nn!α!G(Wαω,Wαψ,Wαφ)q=0jm1(nj)Q(q)j(W;ω,ψ,φ) (2.5)

    for all nN,q>0 and ω,ψ,φE.

    (ⅲ) If W is an (m,q)-G-isometric multimapping, then

    Q(q)m1(W;ω,ψ,φ)=lim (2.6)

    In particular, {\mathcal Q}_{m-1}^{(q)}(\mathcal{W}; \omega, \psi, \varphi) \geq 0 for all \omega, \psi, \varphi \in \mathcal{E}.

    Proof. (i) Using mathematical induction to prove (2.4). The result is verified for k = 0 and k = 1 . We now assume it holds for r = k and will demonstrate its validity for k + 1 .

    By doing so, applying (2.1) and (2.4), we obtain

    \begin{eqnarray*} &&\sum\limits_{|\alpha| = k+1} \frac{{(k+1)!}}{\alpha!}\mathcal{G}\big(\mathcal{W}^{\alpha }\omega,\mathcal{W}^\alpha \psi,\mathcal{W}^{\alpha }\varphi\big)^q \\ & = &{\mathcal Q}_{k+1}^{(q)}(\mathcal{W};\omega,\psi,\varphi)-\sum\limits_{0\leq j \leq k}(-1)^{k+1-j}\binom{k+1}{j}\sum\limits_{|\alpha| = j} \frac{j!}{\alpha!}\mathcal{G}\big(\mathcal{W}^{\alpha }\omega,\mathcal{W}^\alpha \psi,\mathcal{W}^\alpha \varphi\big) \\ & = & {\mathcal Q}_{k+1}^{(q)}(\mathcal{W};\omega,\psi,\varphi)-\sum\limits_{0\leq j\leq k}(-1)^{k+1-j}\binom{k+1}{j}\sum\limits_{0\leq r\leq j} \binom{j}{r}{\mathcal Q}_r^{(q)}(\mathcal{W}\omega,\psi,\varphi)\\ & = & {\mathcal Q}_{k+1}^{(q)}(\mathcal{W};\omega,\psi,\varphi)-\sum\limits_{0\leq r \leq k}{\mathcal Q}_r^{(q)}(\mathcal{W};\omega,\psi,\varphi)\sum\limits_{r\leq j \leq k }(-1)^{k+1-j}\binom{k+1}{j}\binom{j}{r} \\ & = &{\mathcal Q}_{k+1}^{(q)}(\mathcal{W};\omega,\psi,\varphi)-\sum\limits_{0\leq r\leq k}{\mathcal Q}_r^{(q)}(\mathcal{W};\omega,\psi,\varphi)\bigg(\sum\limits_{r\leq j\leq k}(-1)^{k+1-j}\binom{k+1}{r}\binom{k+1-r}{j-r}\bigg)\\ & = &{\mathcal Q}_{k+1}^{(q)}(\mathcal{W};\omega,\psi,\varphi)- \sum\limits_{0\leq r \leq k}\binom{k+1}{r}{\mathcal Q}_r^{(q)}(\mathcal{W};\omega,\psi,\varphi) \bigg(\sum\limits_{r\leq j\leq k}(-1)^{k+1-j}\binom{k+1-r}{j-r}\bigg)\\ & = &{\mathcal Q}_{k+1}^{(q)}(\mathcal{W};\omega,\psi,\varphi)- \sum\limits_{0\leq r \leq k}\binom{k+1}{r}{\mathcal Q}_r^{(q)}(\mathcal{W};\omega,\psi,\varphi) \bigg(-1+\underbrace{\sum\limits_{0\leq r\leq k+1-j}(-1)^{k+1-j-r}\binom{k+1-r}{r}}_{ = 0}\bigg)\cr \\& = &\sum\limits_{0\leq r\leq k+1}\binom{k+1}{r}{\mathcal Q}_r^{(q)}(\mathcal{W};\omega,\psi,\varphi). \end{eqnarray*}

    (ⅱ) The ⅲonly if' part of statement (ⅱ) can be deduced from (2.4), as

    [(m, q)-\mathcal{ISO}]_p[(\mathcal{E},\mathcal{G})]\subset[(k, q)-\mathcal{ISO}]_p[(\mathcal{E},\mathcal{G})]\;\;\hbox{ for}\; k \geq m.

    (ⅲ) From statement (ⅱ), it can be easily observed that

    \sum\limits_{|\alpha| = k}\frac{k!}{\alpha!}d\big(\mathcal{W}^{\alpha}x,\mathcal{W}^\alpha \psi,\mathcal{W}^\alpha \varphi\big)^q = \sum\limits_{0\leq j \leq m-2}\binom{k}{j}{\mathcal Q}_j^{(q)}(\mathcal{W};\omega,\psi,\varphi)+\binom{k}{m-1}{\mathcal Q}_{m-1}^{(q)}(\mathcal{W};\omega,\psi,\varphi).

    Given \frac{\binom{k}{j}}{\binom{k}{m-1}}\rightarrow 0 as k\rightarrow \infty) , for 0\leq j \leq m-2 . The goal is to show that dividing both sides of some equation by \binom{k}{m-1} leads to the desired result.

    We extend [11, Corollary 1 and Corollary 2] to \mathcal{G} -metric space. The proof is similar to the existing proofs and directs readers to the original source for more information.

    Proposition 2.2. Let \mathcal{W} = (\mathcal{W}_1, \cdots, \mathcal{W}_p) be a multimapping where each \mathcal{W}_k is a self-map on a \mathcal{G} -metric space \mathcal{E} . The following properties are true.

    (ⅰ) \mathcal{W} \in [(m, q)-\mathcal{ISO}]_p[(\mathcal{E}, \mathcal{G})] if and only if

    \begin{equation} \sum\limits_{|\alpha| = k}\frac{k!}{\alpha!}\mathcal{G}\big(\mathcal{W}^{\alpha}\omega, \mathcal{W}^{\alpha}\psi,\mathcal{W}^{\alpha}\varphi\big)^q = \sum\limits_{0\leq j\leq m-1}\bigg( \sum\limits_{j\leq p\leq m-1}(-1)^{p-j}\binom{k}{p}\binom{p}{j}\bigg)\sum\limits_{|\alpha| = j}\frac{j!}{\alpha!}\mathcal{G}\big(\mathcal{W}^{\alpha}\omega,\mathcal{W}^{\alpha}\psi,\mathcal{W}^{\alpha}\varphi\big)^q. \end{equation} (2.7)

    (ⅱ) If \mathcal{W}\in [(m, q)-\mathcal{ISO}]_p[(\mathcal{E}, \mathcal{G})] and k \in {\mathbb N} , then

    \begin{equation} \sum\limits_{0\leq j\leq k}(-1)^j\binom{k}{j}j^p\bigg(\sum\limits_{|{\alpha}| = k-j} \frac{(k-j)!}{\alpha!}G\big(\mathcal{W}^{ \alpha}\omega,\mathcal{W}^\alpha \psi,\mathcal{W}^\alpha \varphi\big)^q \bigg) = 0 \end{equation} (2.8)

    for k\geq m , p = 0, 1, \cdots, k-m .

    Corollary 2.1. Let \mathcal{W} = (\mathcal{W}_1, \cdots, \mathcal{W}_p) be multimappings where each \mathcal{W}_k is a self-map on {\mathcal{G}} -metric space \mathcal{E} . The following properties are true.

    (1) \mathcal{W} \in [(2, q)-\mathcal{ISO}]_p[(\mathcal{E}, \mathcal{G})] if and only if \mathcal{W} satisfies

    \begin{equation} \sum\limits_{|\alpha| = k}\frac{k!}{\alpha!}\mathcal{G}\big(\mathcal{W}^{\alpha}\omega,\mathcal{W}^\alpha \psi,\mathcal{W}^\alpha \varphi\big)^q = (1-k)\mathcal{G}\big(\omega,\psi,\varphi\big)^q+k\sum\limits_{1\leq j\leq n}\mathcal{G}\big(\mathcal{W}_j \omega, \mathcal{W}_j\psi,\mathcal{W}_j\varphi\big)^q \end{equation} (2.9)

    \forall\; k\in \mathbb{N} and \omega, \psi, \varphi \in \mathcal{E} .

    (2) If \mathcal{W}\in [(2, q)-\mathcal{ISO}]_p[(\mathcal{E}, \mathcal{G})] . The following property is true.

    \begin{equation} \sum\limits_{1\leq j\leq n}\mathcal{G}\big(\mathcal{W}_j\omega,\mathcal{W}_j\psi,\mathcal{W}_j\varphi\big)^q\geq\frac{k-1}{k}\mathcal{G}\big(\omega,\psi,\varphi\big)^q\;\quad (\,{\forall}\; k\in \mathbb{N}\;\mathit{\text{and}}\;\,{\forall}\; \omega,\psi,\varphi\in \mathcal{E}), \end{equation} (2.10)
    \begin{equation} \sum\limits_{1\leq j\leq p}\mathcal{G}\big(\mathcal{W}_j\omega,\mathcal{W}_j\psi,\mathcal{W}_j\varphi\big)^q\geq{ \mathcal{G}}\big(\omega,\psi,\varphi\big)^q\;\;\;(\,{\forall}\; \omega,\psi,\varphi \in \mathcal{E}), \end{equation} (2.11)
    \begin{equation} \lim\limits_{k\rightarrow \infty}\bigg(\sum\limits_{|\alpha| = k}\frac{k!}{\alpha!}\mathcal{G}\big(\mathcal{W}^\alpha \omega,\mathcal{W}^\alpha \psi ,\mathcal{W}^\alpha \varphi \big)^q\bigg)^{\frac{1}{k}} = 1\qquad (\;{\forall}\; \omega,\psi,\varphi\in \mathcal{E},\;\;\omega\not = \psi,\omega \not = \varphi,\psi\not = \varphi). \end{equation} (2.12)

    Proof. (1) Connect the results obtained from Proposition 2.1(ⅱ) and Remark 2.3(ⅱ) and then link them to establish the equivalence.

    (2) We have (2.9)\Longrightarrow (2.10) and (2.10)\Longrightarrow (2.11)\; (k\to \infty). By following these steps, we can rigorously verify the validity of the inequalities.

    We need to verify (2.12). Let \omega, \psi, \varphi\in \mathcal{E} for which \omega \not = \psi, \omega \not = \varphi, \psi \not = \varphi. It follows from (2.9) that

    \limsup\limits_{r\rightarrow \infty}\bigg(\sum\limits_{|\alpha| = r}\frac{r!}{\alpha!}\mathcal{G}\big(\mathcal{W}^{\alpha}\omega,\mathcal{W}^\alpha \psi,\mathcal{W}^\alpha \varphi\big)^q\bigg)^{\frac{1}{r}} \leq 1.

    However, according to (2.11), the sequence \bigg(\sum\limits_{|\alpha| = r}\frac{k!}{\alpha!}\mathcal{G}\big(\mathcal{W}^{\alpha}\omega, \mathcal{W}^\alpha \psi, \mathcal{W}^{\alpha}\varphi\big)^q\bigg)_{r \in \mathbb{N}} is monotonically increasing, so

    \liminf\limits_ {r\rightarrow \infty}\bigg(\sum\limits_{|\alpha| = r}\frac{r!}{\alpha!}\mathcal{G}\big(\mathcal{W}^{\alpha}\omega,\mathcal{W}^\alpha \psi,\mathcal{W}^\alpha \varphi\big)^q\bigg)^{\frac{1}{r}} \geq \lim\limits_{r\rightarrow \infty}\bigg( \mathcal{G}(\omega,\psi,\varphi)^q\bigg)^{\frac{1}{r}} = 1.

    Definition 2.2. Let \mathcal{W} = (\mathcal{W}_1, \cdots, \mathcal{W}_p) be a tuple of mappings on (\mathcal{E}, \mathcal{G}) . \mathcal{W} is a \mathcal{G} - power bounded tuple if

    \sup\bigg\{\sum\limits_{|\alpha| = k}\frac{k!}{\alpha!}{\mathcal{G}}\big(\mathcal{W}^{\alpha}\omega,\mathcal{W}^\alpha \psi,\mathcal{W}^\alpha \varphi\big)^q\;,\; {\forall} \; k\in \mathbb{N}\bigg\} < \infty

    for all \omega, \psi, \varphi \in \mathcal{E} .

    Theorem 2.2. Let \mathcal{W} = (\mathcal{W}_1, \cdots, \mathcal{W}_p)\in [(m, q)-\mathcal{ISO}]_p[(\mathcal{E}, \mathcal{G})] and \mathcal{G} -power bounded tuple. Then

    \bigg( \sum\limits_{1 \leq i \leq n} {\mathcal{G}}(\mathcal{W}_i\omega, \mathcal{W}_i\psi,\mathcal{W}_i\varphi)^q \bigg)^{\frac{1}{\, q \, }} = {\mathcal{G}}(\omega,\psi,\varphi),

    that is \mathcal{W} \in [(1, q)-\mathcal{ISO}]_p[(\mathcal{E}, \mathcal{G})] .

    Proof. According to that \mathcal{W} is an (m, q) - {{\mathcal{G}}} isometric and (2.5) we obtain

    \sum\limits_{|\alpha| = k} \frac{k!}{\alpha!} {\mathcal{G}}\big(\mathcal{W}^{\alpha }\omega, \mathcal{W}^\alpha\psi,\mathcal{W}^\alpha \varphi\big)^q = \sum\limits_{0\leq j \leq m-1}\binom{k}{j}{\mathcal Q}_j^{(q)}(\mathcal{W};\omega,\psi,\varphi),\;\;\forall\;k\in \mathbb{N}.

    Consequently, real numbers \delta_0(\omega, \psi, \varphi), \delta_1(\omega, \psi, \varphi), \cdots, \delta_{m-1}(\omega, \psi, \varphi) exist such that

    \begin{equation} \sum\limits_{1 \leq i \leq n} {\mathcal{G}}\big(\mathcal{W}_i^k \omega, \; \mathcal{W}_i^k \psi, \mathcal{W}_i^k \varphi\big)^q = \sum\limits_{0 \leq j \leq m-1} \, \delta_j (\omega,\psi,\varphi) \, k^j. \end{equation} (2.13)

    Since \mathcal{W} is power bounded, we put

    M = \sup\bigg\{\sum\limits_{|\alpha| = k}\frac{k!}{\alpha!} {\mathcal{G}} \big(\mathcal{W}^{\alpha}\omega, \; \mathcal{W}^\alpha \psi,\mathcal{W}^\alpha \varphi\big)^q, \;\; k = 0,1,2,...\bigg\} < \infty

    for \omega, \psi, \varphi \in \mathcal{E} . We now obtain

    0 \leq \sup \bigg\{ \sum\limits_{0 \leq j \leq m-1} \delta_j(\omega,\psi,\varphi) k^j \ : \; k = 0,1,2,... \ \bigg\} \leq M^q.

    Since k is arbitrary, we have \delta_1(\omega, \psi, \varphi) = \delta_2 (\omega, \psi, \varphi) = \cdots = \delta_{m-1} (\omega, \psi, \varphi) = 0 . Therefore

    \sum\limits_{0 \leq i \leq p} \, {\mathcal{G}}(\mathcal{W}_i^k \omega, \; \mathcal{W}_i^k \psi,\mathcal{W}_i^k \varphi)^q = \mathcal{G}(\omega,\psi,\varphi)^q.

    Since k is arbitrary, we choose k = 1 to get that \mathcal{W} is a (1, q) - \mathcal{G} -isometric multimapping.

    By using these generalized metrics and their associated isometries, one can explore some \mathcal{G} -metrics-preserving transformations and their applications. Our results extend those given in [12,13,14].

    Let \mathcal{W} be an (m, q) - \mathcal{G} -isometric multimapping. We set

    \Delta_{\mathcal{W}}(\omega,\psi,\varphi) = \bigg(\mathcal{Q}_{m-1}^{(q)}\big(\mathcal{W};\omega,\psi,\varphi\big)\bigg)^{\frac{1}{q}},\; \forall\;\omega,\psi,\varphi \in {\mathcal{E}}, \quad m \geq 1,\;q\geq 1.

    Theorem 3.1. Let \mathcal{W} = (\mathcal{W}_1, \cdots, \mathcal{W}_p) be an (m, q) - \mathcal{G} -isometric multimapping. Then

    \begin{equation} \Delta_{\mathcal{W}}\big(\omega,\psi,\varphi \big) = \sqrt[q]{{(m-1)!}}\lim\limits_{n\longrightarrow\infty} \frac{1}{\sqrt[q]{{n^{(m-1)}}}} \sum\limits_{|\gamma| = n}\frac{n!}{\gamma!}\mathcal{G}\big( \mathcal{W}^\gamma \omega,\; \mathcal{W}^\gamma \psi, \mathcal{W}^\gamma \varphi\big)^q. \end{equation} (3.1)

    Moreover \Delta_{\mathcal{W}} is a semi- \mathcal{G} -metric on {\mathcal{E}}.

    Proof. According to statement (ⅲ) of Theorem 2.1, we may write

    \begin{equation} {\mathcal Q}_{m-1}^{(q)}(\mathcal{W};\omega,\psi,\varphi) = \lim\limits_{n\longrightarrow\infty} \frac{1}{\binom{n}{m-1}} \bigg(\sum\limits_{|\gamma| = n}\frac{n!}{\gamma!}\mathcal{G}\big( \mathcal{W}^\gamma \omega,\; \mathcal{W}^\gamma \psi, \mathcal{W}^\gamma \varphi\big)^q\bigg). \end{equation} (3.2)

    This means that

    \begin{eqnarray*} \rho_{\mathcal{W}}\big(\omega,\psi,\varphi \big)& = &{\mathcal Q}_{m-1}^{(q)}(\mathcal{W};\omega,\psi,\varphi\big)\\& = & {\sqrt[q]{(m-1)!}}\lim\limits_{n\longrightarrow\infty} \frac{1}{\sqrt[q]{{n^{(m-1)}}}} \bigg(\sum\limits_{|\gamma| = n}\frac{n!}{\gamma!}\mathcal{G}\big( \mathcal{W}^\gamma \omega,\; \mathcal{W}^\gamma \psi, \mathcal{W}^\gamma \varphi\big)^q\bigg)^{\frac{1}{q}}. \end{eqnarray*}

    We show that \Delta_{\mathcal{W}} satisfied the following conditions:

    \Delta_{\mathcal{W}}(\omega, \psi, \varphi\geq 0 , by the statement (ⅲ) of Theorem 2.1.

    \Delta_{\mathcal{W}}(\omega, \omega, \omega) = 0 for all \omega \in \mathbb{E}.

    \Delta_{\mathcal{W}}(\omega, \omega, \psi)\leq \Delta_{\mathcal{W}}(\omega, \psi, \varphi) for all \omega, \psi, \varphi \in {\mathcal E} with \psi\not = \varphi .

    \Delta_{\mathcal{W}}(\omega, \psi, \varphi) = \Delta_{\mathcal{W}}(\omega, \varphi, \psi) = \Delta_{\mathcal{W}}(\psi, \varphi, \omega) = ... (symmetry in all three variables).

    \Delta_{\mathcal{W}}(\omega, \psi, \varphi)\leq \Delta_{\mathcal{W}}(\omega, a, a)+\Delta_{\mathcal{W}}(a, \psi, \varphi) for all \omega, \psi, \varphi, a \in {\mathcal E} (rectangle inequality).

    Remark 3.1. It should be noted that if \mathcal{W} is an (m, q) - \mathcal{G} -isometry, then in view of Proposition 2.1,

    \begin{equation*} \label{2.3} \sum\limits_{1\leq k\leq n}{\mathcal Q}_m^{(q)}\big(\mathcal{W};\mathcal{W}_k\omega,\mathcal{W}_k\psi,\mathcal{W}_k\varphi\big) = {\mathcal Q}_m^{(q)}(\mathcal{W};\omega,\psi,\varphi). \end{equation*}

    This means that

    \Delta_{\mathcal{W}}\big(\omega,\psi,\varphi \big) = \sum\limits_{1\leq k\leq m}\Delta_{\mathcal{W}}\big(\mathcal{W}_k\omega,\mathcal{W}_k\psi,\mathcal{W}_k\varphi\big)

    and therefore

    \mathcal{W}:({\mathcal{E}},\;\Delta_{\mathcal{W}}) \longrightarrow (\mathcal{E},\Delta_{\mathcal{W}}),

    is an (1, q) - \mathcal{G} -isometry.

    By observing that

    \begin{eqnarray*} &&\mathcal{Q}_{m}^{(q)}\big(\mathcal{W},\omega,\psi,\varphi\big)\\& = &\sum\limits_{0\leq k \leq m}(-1)^{k}\binom{m}{k}\sum\limits_{|\gamma| = k}\frac{k!}{\gamma!}\mathcal{G}\big( \mathcal{W}^{\gamma}\omega,\; \mathcal{W}^{\gamma}\psi, \mathcal{W}^\gamma\varphi\big)^q \\& = &\sum\limits_{ \begin{array}{c} 0\leq k\leq m \\ k\;(\hbox{even}) \end{array}}\binom{m}{k}\sum\limits_{|\gamma| = k}\frac{k!}{\gamma!}\mathcal{G}\big( \mathcal{W}^{\gamma}\omega,\; \mathcal{W}^{\gamma}\psi, \mathcal{W}^\gamma\varphi\big)^q\\&&-\sum\limits_{ \begin{array}{c} 0\leq k\leq m \\ k\;(\hbox{odd}) \end{array}}\binom{m}{k}\sum\limits_{|\gamma| = k}\frac{k!}{\gamma!}\mathcal{G}\big( \mathcal{W}^{\gamma}\omega,\; \mathcal{W}^{\gamma}\psi, \mathcal{W}^\gamma\varphi\big)^q \\& = &\sum\limits_{ \begin{array}{c} 0\leq k\leq m \\ k\;(\hbox{even}) \end{array}}\binom{m}{k}\sum\limits_{|\gamma| = k}\frac{k!}{\gamma!}\mathcal{G}\big( \mathcal{W}^{\gamma}\omega,\; \mathcal{W}^{\gamma}\psi, \mathcal{W}^\gamma\varphi\big)^q\\&&-\sum\limits_{1\leq k\leq p}\sum\limits_{ \begin{array}{c} 0\leq k\leq m \\ k\;(\hbox{odd}) \end{array}}\binom{m}{k}\sum\limits_{|\gamma^\prime| = k}\frac{k!}{\gamma^\prime!}\mathcal{G}\big( \mathcal{W}^{\gamma^\prime}W_k\omega,\; \mathcal{W}^{\gamma^\prime} \mathcal{W}_k\psi, \mathcal{W}^{\gamma^\prime} \mathcal{W}_k\varphi\big)^q\\& = & \widetilde{ \Delta}_{\mathcal{W}}(\omega, \psi,\varphi)-\sum\limits_{1\leq k\leq p}\widetilde{\Delta_{\mathcal{W}}}^\prime\big(\mathcal{W}_k\omega, \mathcal{W}_k\psi, \mathcal{W}_k\varphi\big). \end{eqnarray*}

    Lemma 3.1. \big(\mathcal{E}, \widetilde{\Delta_{\mathcal{W}}}\big) and \big({\mathcal{E}}, \widetilde{\Delta_{\mathcal{W}}}^\prime\big) are both \mathcal{G} - metric spaces.

    Theorem 3.2. Let \mathcal{W} be a self multimaping on a general metric space (\mathcal{E}, \; \mathcal{G}) and q\geq 1 . Then following statements are equivalent.

    (1) \mathcal{W} = \big(\mathcal{W} _1, \cdots, \mathcal{W}_d\big) where \mathcal{W}_k:({\mathcal{E}}, \; \mathcal{G})\longrightarrow ({\mathcal{E}}, \; \mathcal{G}) is an (m, q) - \mathcal{G} -isometry.

    (2) \mathcal{W}:\big({\mathcal{E}}, \; \widetilde{\Delta_{\mathcal{W}}}\big)\longrightarrow \big({\mathcal{E}}, \; \widetilde{\Delta_{\mathcal{W}}}^\prime\big) is an (1, \mathcal{G}) -isometry.

    Proof. In view of Proposition 2.1, we obtain

    \begin{eqnarray*} &&\mathcal{W} \;\hbox{is an}\;(m,q)-\mathcal{G}-\hbox{isometric tuple} \\&\Leftrightarrow& \sum\limits_{ \begin{array}{c} 0\leq k\leq m \\ k\;(\hbox{even}) \end{array}}\binom{m}{k}\sum\limits_{|\gamma| = k}\frac{k!}{\gamma!}\mathcal{G}\big( \mathcal{W}^{\gamma}\omega,\; \mathcal{W}^{\gamma}\psi, \mathcal{W}^\gamma\varphi\big)^q\\& = &\sum\limits_{ \begin{array}{c} 0\leq k\leq m \\ k\;(\hbox{odd}) \end{array}}\binom{m}{k}\sum\limits_{|\gamma| = k}\frac{k!}{\gamma!}\mathcal{G}\big( \mathcal{W}^{\gamma}\omega,\; \mathcal{W}^{\gamma}\psi, \mathcal{W}^\gamma\varphi\big)^q,\;\forall\;\omega,\psi,\varphi \in {\mathcal{E}}\\&\Leftrightarrow& \widetilde{\Delta_{\mathcal{W}}}(\omega,\psi,\varphi) = \sum\limits_{1\leq k\leq p}\widetilde{\Delta_{\mathcal{W}}}^\prime(\mathcal{W}_k \omega,\mathcal{W}_k\psi, \mathcal{W}_k \varphi\big),\;\forall\;\omega,\psi,\varphi \in {\mathcal{E}}\\&\Leftrightarrow& \mathcal{W}\;\hbox{is an}\;(1,q)-\mathcal{G}-\hbox{isometry tuple}. \end{eqnarray*}

    In general, if either of the statements (1) or (2) in Theorem 3.4 is not satisfied, then the other is also not satisfied, as illustrated in the following example.

    Example 3.4.

    Let (E, d) be a \mathcal{G} -metric space where \mathcal{E} = \{0, 1, 2\} and

    \mathcal{G}(\omega,\psi,\varphi) = \max\big\{ |\omega-\psi|,|\omega-\varphi|,| \varphi-\psi|\big\} \forall\;\omega,\psi,\varphi \in E.

    Define mappings \mathcal{W}_1 and \mathcal{W}_2 : \mathcal{E} \to \mathcal{E} by

    \mathcal{W}_1(0) = 2, \quad \mathcal{W}_1(1) = \mathcal{W}_1(2) = 0,
    \mathcal{W}_2(0) = 0, \quad \mathcal{W}_2(1) = \mathcal{W}_2(2) = 2.

    Then, a straightforward calculation shows that \mathcal{W}_1 \mathcal{W}_2 = \mathcal{W}_2 \mathcal{W}_1, and

    \begin{eqnarray*} &&\mathcal{G}\big(\mathcal{W}_1^2\omega,\mathcal{W}_1^2\psi,\mathcal{W}_1^2\varphi\big)^q+\mathcal{G}\big(\mathcal{W}_2^2\omega,\mathcal{W}_2^2\psi,\mathcal{W}_2^2\varphi\big)^q\\&&+2\mathcal{G}\big(\mathcal{W}_1\mathcal{W}_2\omega,\mathcal{W}_1\mathcal{W}_2\psi,\mathcal{W}_1\mathcal{W}_2\varphi\big)^q +\mathcal{G}\big(\omega,\psi,\varphi\big)^q\\&\not = &2\mathcal{G}\big(\mathcal{W}_1\omega,\mathcal{W}_1\psi,\mathcal{W}_1\varphi\big)^q+2\mathcal{G}\big(\mathcal{W}_2\omega,\mathcal{W}_2\psi,\mathcal{W}_2\varphi\big)^q \end{eqnarray*}

    for all \omega, \psi, \varphi\in {\mathcal{E}}. Therefore, we conclude that the pair \mathcal{W} = (\mathcal{W}_1, \mathcal{W}_2) is not a (2, q)-isometric pair of mappings. Moreover,

    \widetilde{\Delta_{\mathcal{W}}}(\omega,\psi,\varphi)\not = \sum\limits_{1\leq k\leq 2}\widetilde{\Delta_{\mathcal{W}}}^\prime(\mathcal{W}_k \omega,\mathcal{W}_k\psi, \mathcal{W}_k \varphi\big),\;\forall\;\omega,\psi,\varphi \in {\mathcal{E}}.

    (m, q) -isometric multimappings in \mathcal{G} -metric spaces provide a novel framework for analyzing distance-preserving transformations. This research extends classical isometric concepts, offering a broader perspective on metric structures and their properties.

    Hadi Obaid Alshammari developed the main theoretical framework and proofs. Abdulrahman Obaid Alshammari contributed to the refinement of the results and the preparation of illustrative examples. All authors have contributed equally to the research. All authors have read and approved the final version of the manuscript for publication.

    The authors declare that no generative AI tools were used in the writing of this manuscript. All content was written entirely by the authors.

    The authors declare that they have no conflicts of interest.



    [1] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297.
    [2] J. Agler, M. Stankus, m-isometric transformations of Hilbert space, Ⅰ, Integr. Equ. Oper. Theory, 21 (1995), 383–429. https://doi.org/10.1007/BF01222016 doi: 10.1007/BF01222016
    [3] K. Gherairi, Z. Hajjej, H. Li, H. Regeiba, n-quasi-A-(m, q)-isometry on a Banach space, AIMS Mathematics, 8 (2023), 28308–28321. https://doi.org/10.3934/math.20231448 doi: 10.3934/math.20231448
    [4] S. Mecheri, T. Prasad, On n-quasi-m-isometric operators, Asian-Eur. J. Math., 9 (2016), 1650073. https://doi.org/10.1142/S179355711650073X doi: 10.1142/S179355711650073X
    [5] R. P. Agarwal, E. Karapƒ±nar, F. Khojasteh, Ćirić and Meir-Keeler fixed point results in super metric spaces, Appl. Set-Valued Anal. Optim., 4 (2022), 271–275. https://doi.org/10.23952/asvao.4.2022.3.02 doi: 10.23952/asvao.4.2022.3.02
    [6] Y. Hao, J. Gou, H. Guan, The uniqueness of fixed points for two new classes of contractive mappings of integral type in b-metric spaces, J. Nonlinear Funct. Anal., 2024 (2024), 30. https://doi.org/10.23952/jnfa.2024.30 doi: 10.23952/jnfa.2024.30
    [7] H. M. Srivastava, Some families of generalized elliptic-type integrals and the associated multiple hypergeometric functions, J. Nonlinear Var. Anal., 8 (2024), 771–786. https://doi.org/10.23952/jnva.8.2024.5.05 doi: 10.23952/jnva.8.2024.5.05
    [8] T. Bermúdez, A. Martinón, V. Muller, (m, q)-isometries on metric spaces, J. Oper. Theory, 72 (2014), 313–328. https://doi.org/10.7900/jot.2013jan29.1996 doi: 10.7900/jot.2013jan29.1996
    [9] O. A. Mahmoud Sid Ahmed, M. Chō, J. E. Lee, (m, q)-isometric and (m, \infty)-isometric tuples of commutative mappings on a metric space, Filomat, 34 (2020), 2425–2437. https://doi.org/10.2298/FIL2007425M doi: 10.2298/FIL2007425M
    [10] A. M. A. Al-Ahmadi, Quaternion-generalized metric spaces m-quaternion-valued and \mathcal{G}-isometric mappings, Int. J. Pure Appl. Math., 116 (2017), 875–897.
    [11] O. A. Mahmoud Sid Ahmed, M. Chō, J. E. Lee, On (m, C)-isometric commuting tuples of operators on a Hilbert space, Results Math., 73 (2018), 51. https://doi.org/10.1007/s00025-018-0810-0 doi: 10.1007/s00025-018-0810-0
    [12] P. H. W. Hoffmann, M. Mackey, (m, p)-isometric and (m, \infty)-isometric operator tuples on normed spaces, Asian-Eur. J. Math., 8 (2015), 1550022. https://doi.org/10.1142/S1793557115500229 doi: 10.1142/S1793557115500229
    [13] O. A. Mahmoud Sid Ahmed, On (m, p)-(hyper)expansive and (m, p)-(hyper)contractive mappings on a metric space, J. Inequal. Spec. Funct., 7 (2016), 73–87.
    [14] O. B. Sid Ahmed, H. J. Sidi, O. A. Mahmoud Sid Ahmed, \psi(m, q)-isometric mappings on metric spaces, Aust. J. Math. Anal. Appl., 17 (2020), 20.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(152) PDF downloads(22) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog