Let $ S $ be a polynomial ring over a field $ K $ and $ I $ be the edge ideal associated with the bristled graph of some four or five regular circulant graph. We discuss the depth, projective dimension, regularity and Stanley depth of $ S/I $.
Citation: Ibad Ur Rehman, Mujahid Ullah Khan Afridi, Muhammad Ishaq, Asim Asiri, Aftab Hussain. Algebraic invariants of edge ideals of some bristled circulant graphs[J]. AIMS Mathematics, 2025, 10(5): 11330-11348. doi: 10.3934/math.2025515
Let $ S $ be a polynomial ring over a field $ K $ and $ I $ be the edge ideal associated with the bristled graph of some four or five regular circulant graph. We discuss the depth, projective dimension, regularity and Stanley depth of $ S/I $.
| [1] |
B. Alspach, T. D. Parsons, Isomorphism of circulant graphs and digraphs, Discrete Math., 25 (1979), 97–108. https://doi.org/10.1016/0012-365X(79)90011-6 doi: 10.1016/0012-365X(79)90011-6
|
| [2] |
F. K. Hwang, A survey on multi-loop networks, Theor. Comput. Sci., 299 (2003), 107–121. https://doi.org/10.1016/S0304-3975(01)00341-3 doi: 10.1016/S0304-3975(01)00341-3
|
| [3] |
J. C. Bermond, F. Comellas, D. F. Hsu, Distributed loop computer-networks: A survey, J. Parallel Distr. Com., 24 (1995), 2–10. https://doi.org/10.1006/jpdc.1995.1002 doi: 10.1006/jpdc.1995.1002
|
| [4] |
B. Shaukat, M. Ishaq, A. U. Haq, Algebraic invariants of edge ideals of some circulant graphs, AIMS Mathematics, 9 (2023), 868–895. https://doi.org/10.3934/math.2024044 doi: 10.3934/math.2024044
|
| [5] | CoCoATeam, CoCoA: A system for computations in commutative algebra. Available from: http://cocoa.dima.unige.it/. |
| [6] | D. R. Grayson, M. E. Stillman, Macaulay2: A software system for research in algebraic geometry, 2002. Available from: https://www.unimelb-macaulay2.cloud.edu.au/home. |
| [7] |
R. P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math., 68 (1982), 175–193. https://doi.org/10.1007/BF01394054 doi: 10.1007/BF01394054
|
| [8] |
A. M. Duval, B. Goeckner, C. J. Klivans, J. L. Martin, A non-partitionable Cohen–Macaulay simplicial complex, Adv. Math., 299 (2016), 381–395. https://doi.org/10.1016/j.aim.2016.05.011 doi: 10.1016/j.aim.2016.05.011
|
| [9] |
J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra, 322 (2009), 3151–3169. https://doi.org/10.1016/j.jalgebra.2008.01.006 doi: 10.1016/j.jalgebra.2008.01.006
|
| [10] | J. Herzog, A survey on Stanley depth, In: Monomial ideals, computations and applications, Berlin, Heidelberg: Springer, 2013, 3–45. https://doi.org/10.1007/978-3-642-38742-5_1 |
| [11] |
M. U. K. Afridi, I. Ur Rehman, M. Ishaq, Algebraic invariants of the edge ideals of whisker graphs of cubic circulant graphs. Heliyon, 11 (2025), e41783. https://doi.org/10.1016/j.heliyon.2025.e41783 doi: 10.1016/j.heliyon.2025.e41783
|
| [12] |
M. M. S. Shahid, M. Ishaq, A. Jirawattanapanit, K. Subkrajang, Depth and Stanley depth of the edge ideals of multi triangular snake and multi triangular ouroboros snake graphs, AIMS Mathematics, 7 (2022), 16449–16463. https://doi.org/10.3934/math.2022900 doi: 10.3934/math.2022900
|
| [13] |
Z. Iqbal, M. Ishaq, M. Aamir, Depth and Stanley depth of the edge ideals of square paths and square cycles, Commun. Algebra, 46 (2018), 1188–1198. https://doi.org/10.1080/00927872.2017.1339068 doi: 10.1080/00927872.2017.1339068
|
| [14] | W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge university press, 1998. https://doi.org/10.1017/CBO9780511608681 |
| [15] |
A. Rauf, Depth and Stanley depth of multigraded modules Commun. Algebra, 38 (2010), 773–784. https://doi.org/10.1080/00927870902829056 doi: 10.1080/00927870902829056
|
| [16] |
G. Caviglia, H. T. Hà, J. Herzog, M. Kummini, N. Terai, N. V. Trung, Depth and regularity modulo a principal ideal, J. Algebr. Comb., 49 (2019), 1–20. https://doi.org/10.1007/s10801-018-0811-9 doi: 10.1007/s10801-018-0811-9
|
| [17] | R. H. Villarreal, Monomial algebras, monographs and textbooks in pure and applied mathematics, New York: Marcel Dekker, Inc., 2001. |
| [18] | A. Alipour, A. Tehranian, Depth and Stanley depth of edge ideals of star graphs, Int. J. Appl. Math. Stat., 56 (2017), 63–69. |
| [19] | B. Shaukat, M. Ishaq, A. U. Haq, Z. Iqbal, Algebraic properties of edge ideals of corona product of certain graphs, 2022, arXiv: 2211.05721. https://doi.org/10.48550/arXiv.2211.05721 |
| [20] | M. Cimpoeas, Several inequalities regarding Stanley depth, Rom. J. Math. Comput. Sci., 2 (2012), 28–40. |
| [21] |
N. U. Din, M. Ishaq, Z. Sajid, Values and bounds for depth and Stanley depth of some classes of edge ideals, AIMS Mathematics, 6 (2021), 8544–8566. https://doi.org/10.3934/math.2021496 doi: 10.3934/math.2021496
|
| [22] | S. Morey, R. H. Villarreal, Edge ideals: Algebraic and combinatorial properties, Progress in Commut. Algebr., 1 (2012), 85–126. |
| [23] |
G. Kalai, R. Meshulam, Intersections of Leray complexes and regularity of monomial ideals, J. Comb. Theory A, 113 (2006), 1586–1592. https://doi.org/10.1016/j.jcta.2006.01.005 doi: 10.1016/j.jcta.2006.01.005
|
| [24] |
J. Herzog, A generalization of the Taylor complex construction, Commun. Algebra, 35 (2007), 1747–1756. https://doi.org/10.1080/00927870601139500 doi: 10.1080/00927870601139500
|
| [25] |
M. Katzman, Characteristic-independence of Betti numbers of graph ideals, J. Comb. Theory A, 113 (2006), 435–454. https://doi.org/10.1016/j.jcta.2005.04.005 doi: 10.1016/j.jcta.2005.04.005
|
| [26] |
H. T. Hà, A. V. Tuyl, Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers, J. Algebr. Comb., 27 (2008), 215–245. https://doi.org/10.1007/s10801-007-0079-y doi: 10.1007/s10801-007-0079-y
|
| [27] | R. Woodroofe, Matchings, coverings, and Castelnuovo-Mumford regularity, J. Commut. Algebra, 6 (2014), 287–304. |
| [28] |
L. T. Hoa, N. D. Tam, On some invariants of a mixed product of ideals, Arch. Math., 94 (2010), 327–337. https://doi.org/10.1007/s00013-010-0112-6 doi: 10.1007/s00013-010-0112-6
|
| [29] |
Y. Muta, M. R. Pournaki, N. Terai, A local cohomological viewpoint on edge rings associated with multi-whisker graphs, Commun. Algebra, 53 (2024), 1856–1865. https://doi.org/10.1080/00927872.2024.2423888 doi: 10.1080/00927872.2024.2423888
|