The problem of stability and stabilization for a class of circuit systems with time-varying delays via variable period sampled-data control was considered in this paper. First, the unique boundary conditions were utilized to handle the conic-type nonlinear terms. A Lyapunov-Krasovskii (L-K) functional, which can consider both time-varying delay and sampling time information, was constructed. Then, based on the free-weighting matrices and the improved reciprocally convex combination approach, sufficient conditions for system stabilization over a wider sampling interval were obtained in terms of Linear Matrix Inequalities (LMI), enabling the determination of controller gains. Finally, considering the impact of stable operation of the circuit system on the energy consumption and life cycle of the building, a time-delayed circuit system simulation verified our results, by assuming different upper bounds on time-delay and maximum sampling intervals and designing a modal-related sampled-data controller corresponding to them. The results showed the successful application of this method in the building circuit system, which provides theoretical support for the optimization of building energy consumption and the stable operation of the circuit system.
Citation: Honghong Wang, Kai Wang. Application of sample-data control for a class of time-delay nonlinear systems in circuit systems[J]. AIMS Mathematics, 2025, 10(5): 11316-11329. doi: 10.3934/math.2025514
The problem of stability and stabilization for a class of circuit systems with time-varying delays via variable period sampled-data control was considered in this paper. First, the unique boundary conditions were utilized to handle the conic-type nonlinear terms. A Lyapunov-Krasovskii (L-K) functional, which can consider both time-varying delay and sampling time information, was constructed. Then, based on the free-weighting matrices and the improved reciprocally convex combination approach, sufficient conditions for system stabilization over a wider sampling interval were obtained in terms of Linear Matrix Inequalities (LMI), enabling the determination of controller gains. Finally, considering the impact of stable operation of the circuit system on the energy consumption and life cycle of the building, a time-delayed circuit system simulation verified our results, by assuming different upper bounds on time-delay and maximum sampling intervals and designing a modal-related sampled-data controller corresponding to them. The results showed the successful application of this method in the building circuit system, which provides theoretical support for the optimization of building energy consumption and the stable operation of the circuit system.
| [1] |
Y. Pan, K. Xu, R. Wang, H. Wang, G. Chen, K. Wang, Lithium-ion battery condition monitoring: a frontier in acoustic sensing technology, Energies, 18 (2025), 1068. https://doi.org/10.3390/en18051068 doi: 10.3390/en18051068
|
| [2] |
N. Cao, H. Du, J. Lu, Z. Li, Q. Qiang, H. Lu, Designing ionic liquid electrolytes for a rigid and Li+-conductive solid electrolyte interface in high performance lithium metal batteries, Chem. Phys. Lett., 866 (2025), 141959. https://doi.org/10.1016/j.cplett.2025.141959 doi: 10.1016/j.cplett.2025.141959
|
| [3] |
M. Ilbeigi, M. Ghomeishi, A. Dehghanbanadaki. Prediction and optimization of energy consumption in an office building using artificial neural network and a genetic algorithm, Sustain. Cities Soc., 61 (2020), 102325. https://doi.org/10.1016/j.scs.2020.102325 doi: 10.1016/j.scs.2020.102325
|
| [4] |
L. Kang, B. Xu, P. Li, K. Wang, J. Chen, H. Du, et al., Controllable preparation of low-cost coal gangue-based SAPO-5 molecular sieve and its adsorption performance for heavy metal ions, Nanomaterials, 15 (2025), 366. https://doi.org/10.3390/nano15050366 doi: 10.3390/nano15050366
|
| [5] |
H. Zhang, Z. Li, Y. Liu, X. Du, Y. Gao, W. Xie, et al., Oxygen vacancies-modulated $C-WO_{3}$/BiOBr heterojunction for highly efficient benzene degradation, Vacuum, 234 (2025), 114117. https://doi.org/10.1016/j.vacuum.2025.114117 doi: 10.1016/j.vacuum.2025.114117
|
| [6] |
D. Xu, L. Zhang, H. Wang, K. Wang, W. Zhang, An investigation of the ventilation systems of whole-indoor urban substations, Buildings, 14 (2024), 3749. https://doi.org/10.3390/buildings14123749 doi: 10.3390/buildings14123749
|
| [7] |
Q. Zhu, Event-triggered sampling problem for exponential stability of stochastic nonlinear delay systems driven by Lévy processes, IEEE Trans. Automat. Control, 70 (2025), 1176–1183. https://doi.org/10.1109/TAC.2024.3448128 doi: 10.1109/TAC.2024.3448128
|
| [8] |
J. Sun, G. Han, Z. Zeng, Y. Wang, Memristor-based neural network circuit of full-function pavlov associative memory with time delay and variable learning rate, IEEE Trans. Cybern., 50 (2020), 2935–2945. https://doi.org/10.1109/TCYB.2019.2951520 doi: 10.1109/TCYB.2019.2951520
|
| [9] |
Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control, IEEE Trans. Automat. Control, 64 (2019), 3764–3771. https://doi.org/10.1109/TAC.2018.2882067 doi: 10.1109/TAC.2018.2882067
|
| [10] |
X. M. Zhang, Q. L. Han, X. Ge, A novel approach to $H_{\infty}$ performance analysis of discrete-time networked systems subject to network-induced delays and malicious packet dropouts, Automatica, 136 (2022), 110010. https://doi.org/10.1016/j.automatica.2021.110010 doi: 10.1016/j.automatica.2021.110010
|
| [11] |
Y. Zheng, Z. Y. Dong, Y. Xu, K. Meng, J. H. Zhao, J. Qiu, Electric vehicle battery charging/swap stations in distribution systems: comparison study and optimal planning, IEEE Trans. Power Syst., 29 (2014), 221–229. https://doi.org/10.1109/TPWRS.2013.2278852 doi: 10.1109/TPWRS.2013.2278852
|
| [12] |
Y. Pan, K. Xu, Z. Chen, K. Wang, Advanced techniques for internal temperature monitoring in lithium-ion batteries: a review of recent developments, Coatings, 15 (2025), 268. https://doi.org/10.3390/coatings15030268 doi: 10.3390/coatings15030268
|
| [13] |
Y. Chen, Z. Zhang, B. Yang, B. Zhang, L. Fu, Z. He, A clamp circuit-based inductive power transfer system with reconfigurable rectifier tolerating extensive coupling variations, IEEE Trans. Power Electron., 39 (2024), 1942–1946. https://doi.org/10.1109/TPEL.2023.3303487 doi: 10.1109/TPEL.2023.3303487
|
| [14] |
S. R. Jia, W. J. Lin, Adaptive event-triggered reachable set control for Markov jump cyber-physical systems with time-varying delays, AIMS Math., 9 (2024), 25127–25144. https://doi.org/10.3934/math.20241225 doi: 10.3934/math.20241225
|
| [15] |
C. Qin, W. J. Lin, Adaptive event-triggered fault-tolerant control for Markov jump nonlinear systems with time-varying delays and multiple faults, Commun. Nonlinear Sci. Numer. Simul., 28 (2024), 107655. https://doi.org/10.1016/j.cnsns.2023.107655 doi: 10.1016/j.cnsns.2023.107655
|
| [16] |
D. Chalishajar, D. Kasinathan, R. Kasinathan, R. Kasinathan, Exponential stability, T-controllability and optimal controllability of higher-order fractional neutral stochastic differential equation via integral contractor, Chaos, Soliton. Fract., 186 (2024), 115278. https://doi.org/10.1016/j.chaos.2024.115278 doi: 10.1016/j.chaos.2024.115278
|
| [17] |
D. Chalishajar, D. Kasinathan, R. Kasinathan, R. Kasinathan, Viscoelastic Kelvin–Voigt model on Ulam–Hyer's stability and T-controllability for a coupled integro fractional stochastic systems with integral boundary conditions via integral contractors. Chaos, Soliton. Fract., 191 (2025), 115785. https://doi.org/10.1016/j.chaos.2024.115785 doi: 10.1016/j.chaos.2024.115785
|
| [18] |
M. N. ElBsat, E. E. Yaz, Robust and resilient finite-time bounded control of discrete-time uncertain nonlinear systems, Automatica, 49 (2013), 2292–2296. https://doi.org/10.1016/j.automatica.2013.04.003 doi: 10.1016/j.automatica.2013.04.003
|
| [19] |
R. Nie, S. He, F. Liu, X. Luan, Sliding mode controller design for conic-type nonlinear semi-Markovian jumping systems of time-delayed Chua's circuit, IEEE Trans. Syst., Man, Cybern.: Syst., 51 (2021), 2467–2475. https://doi.org/10.1109/TSMC.2019.2914491 doi: 10.1109/TSMC.2019.2914491
|
| [20] |
X. M. Zhang, Q. L. Han, X. Ge, B. Ning, B. L. Zhang, Sampled-data control systems with non-uniform sampling: a survey of methods and trends, Ann. Rev. Control, 55 (2023), 70–91. https://doi.org/10.1016/j.arcontrol.2023.03.004 doi: 10.1016/j.arcontrol.2023.03.004
|
| [21] |
Y. Niu, K. Shi, X. Cai, S. Wen, Adaptive smooth sampled-data control for synchronization of T–S fuzzy reaction-diffusion neural networks with actuator saturation, AIMS Math., 10 (2025), 1142–1161. https://doi.org/10.3934/math.2025054 doi: 10.3934/math.2025054
|
| [22] |
Y. Wang, Y. Cao, Z. Guo, T. Huang, S. Wen, Event-based sliding-mode synchronization of delayed memristive neural networks via continuous/periodic sampling algorithm, Appl. Math. Comput., 383 (2020), 125379. https://doi.org/10.1016/j.amc.2020.125379 doi: 10.1016/j.amc.2020.125379
|
| [23] |
X. Yang, T. Zhao, Q. Zhu, Aperiodic event-triggered controls for stochastic functional differential systems with sampled-data delayed output, IEEE Trans. Automat. Control, 70 (2025), 2090–2097. https://doi.org/10.1109/TAC.2024.3486978 doi: 10.1109/TAC.2024.3486978
|
| [24] |
E. Fridman, A refined input delay approach to sampled-data control, Automatica, 46 (2010), 421–427. https://doi.org/10.1016/j.automatica.2009.11.017 doi: 10.1016/j.automatica.2009.11.017
|
| [25] |
K. Liu, E. Fridman, Networked-based stabilization via discontinuous Lyapunov functionals, Int. J. Robust Nonlinear Control, 22 (2012), 420–436. https://doi.org/10.1002/rnc.1704 doi: 10.1002/rnc.1704
|
| [26] |
A. Seuret, C. Briat, Stability analysis of uncertain sampled-data systems with incremental delay using looped-functionals, Automatica, 55 (2015), 274–278. https://doi.org/10.1016/j.automatica.2015.03.015 doi: 10.1016/j.automatica.2015.03.015
|
| [27] |
X. Zhuang, Y. Tian, H. Wang, State estimation of networked nonlinear systems with aperiodic sampled delayed measurement, ISA Trans., 156 (2025), 179–187. https://doi.org/10.1016/j.isatra.2024.11.029 doi: 10.1016/j.isatra.2024.11.029
|
| [28] |
X. Zhuang, H. Wang, Y. Tian, Delayed sampled impulsive observer design for a class of non-affine nonlinear systems with aperiodic sampled and delayed measurements, Int. J. Robust Nonlinear Control, 35 (2025), 3308–3316. https://doi.org/10.1002/rnc.7842 doi: 10.1002/rnc.7842
|
| [29] |
R. Zhang, X. Liu, D. Zeng, S. Zhong, K. Shi, A novel approach to stability and stabilization of fuzzy sampled-data Markovian chaotic systems, Fuzzy Sets Syst., 344 (2018), 108–128. https://doi.org/10.1016/j.fss.2017.12.010 doi: 10.1016/j.fss.2017.12.010
|
| [30] |
X. M. Zhang, Q. L. Han, A. Seuret, F. Gouaisbaut, An improved reciprocally convex inequality and an augmented Lyapunov–Krasovskii functional for stability of linear systems with time-varying delay, Automatica, 84 (2017), 221–226. https://doi.org/10.1016/j.automatica.2017.04.048 doi: 10.1016/j.automatica.2017.04.048
|
| [31] |
R. Zhang, D. Zeng, S. Zhong, Novel master–slave synchronization criteria of chaotic Lur'e systems with time delays using sampled-data control, J. eFranklin Inst., 354 (2017), 4930–4954. https://doi.org/10.1016/j.jfranklin.2017.05.008 doi: 10.1016/j.jfranklin.2017.05.008
|
| [32] |
H. B. Zeng, K. L. Teo, Y. He, A new looped-functional for stability analysis of sampled-data systems, Automatica, 82 (2017), 328–331. https://doi.org/10.1016/j.automatica.2017.04.051 doi: 10.1016/j.automatica.2017.04.051
|
| [33] |
X. Zhuang, Y. Tian, H. A. Ghani, H. Wang, S. A. Ali, Sampled-data neural network observer for motion state estimation of full driving automation vehicle, IEEE Trans. Veh. Technol., 74 (2025), 2726–2738. https://doi.org/10.1109/TVT.2024.3479416 doi: 10.1109/TVT.2024.3479416
|
| [34] |
K. Yu, Y. Li, Adaptive fuzzy control for nonlinear systems with sampled data and time-varying input delay, AIMS Math., 5 (2020), 2307–2325. https://doi.org/10.3934/math.2020153 doi: 10.3934/math.2020153
|
| [35] |
R. Datta, R. Saravanakumar, R. Dey, B. Bhattacharya, Further results on stability analysis of Takagi–Sugeno fuzzy time-delay systems via improved Lyapunov–Krasovskii functional, AIMS Math., 7 (2022), 16464–16481. https://doi.org/10.3934/math.2022901 doi: 10.3934/math.2022901
|
| [36] |
Z. Zhao, W. Lin, Extended dissipative analysis for memristive neural networks with two-delay components via a generalized delay-product-type Lyapunov-Krasovskii functional, AIMS Math., 8 (2023), 30777–30789. https://doi.org/10.3934/math.20231573 doi: 10.3934/math.20231573
|
| [37] |
A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: application to time-delay systems, Automatica, 49 (2013), 2860–2866. https://doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
|
| [38] |
W. J. Lin, Y. He, M. Wu, Q. Liu, Reachable set estimation for Markovian jump neural networks with time-varying delay, Neural Networks, 108 (2018), 527–532. https://doi.org/10.1016/j.neunet.2018.09.011 doi: 10.1016/j.neunet.2018.09.011
|