To study the projective Ricci curvature (PRic-curvature) in Finsler geometry is interesting because it reflects the geometric properties that are invariant under the projective transformation. In this paper, we firstly derived an expression of S-curvature for the cubic Finsler metric and proved that this S-curvature vanishes if and only if $ \beta $ is a constant Killing form. Next, we obtain an explicit expression of projective Ricci curvature for the cubic metric. We also proved that for the projective Ricci-flat Finsler space, the $ 1 $-form $ \beta $ is closed, and then the Riemannian metric of $ \alpha $ is also Ricci-flat. Finally, we show that the cubic Finsler metric is of weak projective Ricci curvature if and only if it is projectively Ricci-flat.
Citation: Yanlin Li, Yuquan Xie, Manish Kumar Gupta, Suman Sharma. On projective Ricci curvature of cubic metrics[J]. AIMS Mathematics, 2025, 10(5): 11305-11315. doi: 10.3934/math.2025513
To study the projective Ricci curvature (PRic-curvature) in Finsler geometry is interesting because it reflects the geometric properties that are invariant under the projective transformation. In this paper, we firstly derived an expression of S-curvature for the cubic Finsler metric and proved that this S-curvature vanishes if and only if $ \beta $ is a constant Killing form. Next, we obtain an explicit expression of projective Ricci curvature for the cubic metric. We also proved that for the projective Ricci-flat Finsler space, the $ 1 $-form $ \beta $ is closed, and then the Riemannian metric of $ \alpha $ is also Ricci-flat. Finally, we show that the cubic Finsler metric is of weak projective Ricci curvature if and only if it is projectively Ricci-flat.
| [1] |
X. Cheng, Y. Shen, X. Ma, On a class of projective Ricci flat Finsler metrics, Publ. Math. Debrecen, 90 (2017), 169–180. https://doi.org/10.5486/PMD.2017.7528 doi: 10.5486/PMD.2017.7528
|
| [2] |
X. Cheng, Z. Shen, Y. Tian, A class of Einstein $(\alpha, \beta)$-metrics, Isr. J. Math., 192 (2012), 221–249. https://doi.org/10.1007/s11856-012-0036-x doi: 10.1007/s11856-012-0036-x
|
| [3] | S. S. Chern, Z. Shen, Riemannian-Finsler geometry, Singapore: World Scientific, 2005. https://doi.org/10.1142/5263 |
| [4] | M. Gabrani, B. Rezaei, A. Tayebi, On projective Ricci curvature of Matsumoto metrics, Acta Math. Univ. Comen., 90 (2021), 111–126. |
| [5] |
Y. Li, M. K. Gupta, S. Sharma, S. Chaubey, On Ricci curvature of a homogeneous generalized Matsumoto Finsler space, Mathematics, 11 (2023), 3365. https://doi.org/10.3390/math11153365 doi: 10.3390/math11153365
|
| [6] |
Y. Li, M. S. Siddesha, H. A. Kumara, M. M. Praveena, Characterization of Bach and Cotton tensors on a class of Lorentzian manifolds, Mathematics, 12 (2024), 3130. https://doi.org/10.3390/math12193130 doi: 10.3390/math12193130
|
| [7] |
Y. Li, A. M. Cherif, Y. Xie, Characterization of Ricci solitons and Harmonic vector fields on the Lie group Nil4, Mathematics, 13 (2025), 1155. https://doi.org/10.3390/math13071155 doi: 10.3390/math13071155
|
| [8] |
Y. Li, M. Bouleryah, A. Ali, On convergence of Toeplitz quantization of the sphere, Mathematics, 12 (2024), 3565. https://doi.org/10.3390/math12223565 doi: 10.3390/math12223565
|
| [9] |
M. Matsumoto, Theory of Finsler spaces with $(\alpha, \beta)$-metric, Rep. Math. Phys., 31 (1992), 43–83. https://doi.org/10.1016/0034-4877(92)90005-L doi: 10.1016/0034-4877(92)90005-L
|
| [10] |
X. Cheng, Z. Shen, A class of Finsler metrics with isotropic S-curvature, Isr. J. Math., 169 (2009), 317–340. https://doi.org/10.1007/s11856-009-0013-1 doi: 10.1007/s11856-009-0013-1
|
| [11] |
Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Adv. Math., 128 (1997), 306–328. https://doi.org/10.1006/aima.1997.1630 doi: 10.1006/aima.1997.1630
|
| [12] |
Z. Shen, L. Sun, On the projective Ricci curvature, Sci. China Math., 64 (2021), 1629–1636. https://doi.org/10.1007/s11425-020-1705-x doi: 10.1007/s11425-020-1705-x
|
| [13] |
T. Tabatabaeifar, B. Najafi, A. Tayebi, Weighted projective Ricci curvature in Finsler geometry, Math. Slovaca, 71 (2021), 183–198. https://doi.org/10.1515/ms-2017-0446 doi: 10.1515/ms-2017-0446
|
| [14] |
G. Yang, On a class of Einstein-reversible Finsler metrics, Differ. Geom. Appl., 60 (2018), 80–103. https://doi.org/10.1016/j.difgeo.2018.05.009 doi: 10.1016/j.difgeo.2018.05.009
|
| [15] |
H. Zhu, On a class of projectively Ricci-flat Finsler metrics, Differ. Geom. Appl., 73 (2020), 101680. https://doi.org/10.1016/j.difgeo.2020.101680 doi: 10.1016/j.difgeo.2020.101680
|