Research article

Geometric inequalities and equality conditions for slant submersions in Kenmotsu space forms

  • Correction on: AIMS Mathematics 10: 16744-16745.
  • Received: 17 February 2025 Revised: 04 April 2025 Accepted: 09 April 2025 Published: 18 April 2025
  • MSC : 53B05, 53B20, 53C40

  • This study explored specific inequalities related to the scalar and Ricci curvatures of slant submersions in Kenmotsu space forms. We derived important geometric bounds and systematically investigated the conditions under which these bounds converge to equality. These findings enlarge the current setup of curvature inequalities and offer new findings on the geometric properties of slant submersions of contact structures.

    Citation: Md Aquib, Ibrahim Al-Dayel, Mohd Iqbal, Meraj Ali Khan. Geometric inequalities and equality conditions for slant submersions in Kenmotsu space forms[J]. AIMS Mathematics, 2025, 10(4): 8873-8890. doi: 10.3934/math.2025406

    Related Papers:

  • This study explored specific inequalities related to the scalar and Ricci curvatures of slant submersions in Kenmotsu space forms. We derived important geometric bounds and systematically investigated the conditions under which these bounds converge to equality. These findings enlarge the current setup of curvature inequalities and offer new findings on the geometric properties of slant submersions of contact structures.



    加载中


    [1] G. Agrawal, Nonlinear fiber optics, 5 Eds., Academic Press, 2013. https://doi.org/10.1016/C2011-0-00045-5
    [2] M. A. Akyol, S. Beyendi, Riemannian submersions endowed with a semi-symmetric non-metric connection, Konuralp Journal of Mathematics, 6 (2018), 188–193.
    [3] M. A. Akyol, B. Şahin, Conformal anti-invariant submersions from almost Hermitian manifolds, Turk. J. Math., 40 (2016), 43–70. https://doi.org/10.3906/mat-1408-20 doi: 10.3906/mat-1408-20
    [4] M. Aquib, J. W. Lee, G.-E. Vîlcu, D. W. Yoon, Classification of Casorati ideal Lagrangian submanifolds in complex space forms, Differ. Geom. Appl., 63 (2019), 30–49. https://doi.org/10.1016/j.difgeo.2018.12.006 doi: 10.1016/j.difgeo.2018.12.006
    [5] M. Aquib, M. H. Shahid, Generalized normalized $\delta$-Casorati curvature for statistical submanifolds in quaternion Kaehler-like statistical space forms, J. Geom., 109 (2018), 13. https://doi.org/10.1007/s00022-018-0418-2 doi: 10.1007/s00022-018-0418-2
    [6] M. Aquib, Some inequalities for statistical submanifolds of quaternion kaehler-like statistical space forms, Int. J. Geom. Methods Mod. Phys., 16 (2019), 1950129. https://doi.org/10.1142/S0219887819501299 doi: 10.1142/S0219887819501299
    [7] M. E. Aydın, A. Mihai, I. Mihai, Some inequalities on submanifolds in statistical manifolds of constant curvature, Filomat, 29 (2015), 465–477. https://doi.org/10.2298/FIL1503465A doi: 10.2298/FIL1503465A
    [8] H. Aytimur, C. Özgür, Inequalities for submanifolds in statistical manifolds of quasi-constant curvature, Ann. Pol. Math., 121 (2018), 197–215. https://doi.org/10.4064/ap171106-27-6 doi: 10.4064/ap171106-27-6
    [9] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, 2 Eds., Boston, MA: Birkhäuser, 2010. https://doi.org/10.1007/978-0-8176-4959-3
    [10] B.-Y. Chen, Geometry of slant submanifolds, Katholieke Universiteit Leuven, Leuven, 1990.
    [11] B.-Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasg. Math. J., 41 (1999), 33–41. https://doi.org/10.1017/S0017089599970271 doi: 10.1017/S0017089599970271
    [12] B.-Y. Chen, A general optimal inequality for arbitrary Riemannian submanifolds, Journal of Inequalities in Pure and Applied Mathematics, 6 (2005), 77.
    [13] B. Chow, P. Lu, L. Ni, Hamilton's Ricci flow, American Mathematical Society, 2006. http://doi.org/10.1090/gsm/077
    [14] M. Falcitelli, A. M. Pastore, S. Ianus, Riemannian submersions and related topics, World Scientific, 2004. https://doi.org/10.1142/5568
    [15] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16 (1967), 715–737.
    [16] Y. Gündüzalp, Slant submersions in paracontact geometry, Hacet. J. Math. Stat., 49 (2020), 822–834. https://doi.org/10.15672/hujms.458085 doi: 10.15672/hujms.458085
    [17] Y. Gündüzalp, M. Prolat, Some inequalities of anti-invariant Riemannian submersions in complex space forms, Miskolc Math. Notes, 23 (2022), 703–714. https://doi.org/10.18514/MMN.2022.3883 doi: 10.18514/MMN.2022.3883
    [18] Y. Gündüzalp, Slant submersions from almost product Riemannian manifolds, Turk. J. Math., 37 (2013), 863–873. https://doi.org/10.3906/mat-1205-64 doi: 10.3906/mat-1205-64
    [19] S. Ianus, A. M. Ionescu, R. Mocanu, G. E. Vîlcu, Riemannian submersions from almost contact metric Manifolds, Abh. Math. Semin. Univ. Hamburg., 81 (2011), 101–114. https://doi.org/10.1007/s12188-011-0049-0 doi: 10.1007/s12188-011-0049-0
    [20] S. Ianus, R. Mazzocco, G. E. Vîlcu, Riemannian submersions from quaternionic manifolds, Acta Appl. Math., 104 (2008), 83–89. https://doi.org/10.1007/s10440-008-9241-3 doi: 10.1007/s10440-008-9241-3
    [21] E. Kılıç, S. E. Meriç, Some applications of $\eta$-Ricci solitons to contact Riemannian submersions, Filomat, 36 (2022), 1895–1910. https://doi.org/10.2298/FIL2206895K doi: 10.2298/FIL2206895K
    [22] K. Kenmotsu, A class of almostcontact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93–103. https://doi.org/10.2748/tmj/1178241594 doi: 10.2748/tmj/1178241594
    [23] C. W. Lee, J. W. Lee, B. Şahin, G.-E. Vîlcu, Optimal inequalities for Riemannian maps and Riemannian submersions involving Casorati curvatures, Annali di Matematica, 200 (2021), 1277–1295. https://doi.org/10.1007/s10231-020-01037-7 doi: 10.1007/s10231-020-01037-7
    [24] J. W. Lee, C. W. Lee, B. Şahin, G.-E. Vîlcu, Chen-Ricci inequalities for Riemannian maps and their applications, In: Differential geometry and global analysis: in honor of Tadashi Nagano, Providence, RI: Amer. Math. Soc., 2022,137–152. https://doi.org/10.1090/conm/777/15627
    [25] K. Matsumoto, I. Mihai, Y. Tazawa, Ricci tensor of slant submanifolds in complex space forms, Kodai Math. J., 26 (2003), 85–94. https://doi.org/10.2996/kmj/1050496650 doi: 10.2996/kmj/1050496650
    [26] Ş. E. Meriç, E. Kılıç, Y. Sagiroglu, Scalar curvature of Lagrangian Riemannian submersions and their harmonicity, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1750171. https://doi.org/10.1142/S0219887817501717 doi: 10.1142/S0219887817501717
    [27] H. G. Nagaraja, C. R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. Math. Anal., 3 (2012), 18–24.
    [28] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J., 13 (1966), 459–469. https://doi.org/10.1307/MMJ/1028999604 doi: 10.1307/MMJ/1028999604
    [29] C. Özgür, B.-Y. Chen inequalities for submanifolds of a Riemannian manifold of quasi-constant curvature, Turk. J. Math., 35 (2011), 501–509. https://doi.org/10.3906/mat-1001-73 doi: 10.3906/mat-1001-73
    [30] F. Özdemir, C. Sayar, H. M. Taştan, Semi-invariant submersions whose total manifolds are locally product Riemannian, Quaest. Math., 40 (2017), 909–926. https://doi.org/10.2989/16073606.2017.1335657 doi: 10.2989/16073606.2017.1335657
    [31] N. Poyraza, M. A. Akyol, Chen inequalities for slant Riemannian submersions from cosymplectic space forms, Filomat, 37 (2023), 3615–3629. https://doi.org/10.2298/FIL2311615P doi: 10.2298/FIL2311615P
    [32] B. Şahin, Riemannian submersions, Riemannian maps in Hermitian geometry, and their applications, Amsterdam: Elsevier, 2017.
    [33] B. Şahin, Chen's first inequality for Riemannian maps, Ann. Pol. Math., 117 (2016), 249–258. https://doi.org/10.4064/ap3958-7-2016 doi: 10.4064/ap3958-7-2016
    [34] B. Şahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie, 54 (2011), 93–105.
    [35] G. E. Vîlcu, Slant submanifolds of quaternionic space forms, Publ. Math. Debrecen, 81 (2012), 397–413. https://doi.org/10.5486/PMD.2012.5273 doi: 10.5486/PMD.2012.5273
    [36] G. E. Vılcu, B.-Y. Chen inequalities for slant submanifolds in quaternionic space forms, Turk. J. Math., 34 (2010), 115–128. https://doi.org/10.3906/mat-0807-14 doi: 10.3906/mat-0807-14
    [37] G.-E. Vîlcu, An optimal inequality for Lagrangian submanifolds in complex space forms involving Casorati curvature, J. Math. Anal. Appl., 465 (2018), 1209–1222. https://doi.org/10.1016/j.jmaa.2018.05.060 doi: 10.1016/j.jmaa.2018.05.060
    [38] G.-E. Vîlcu, Horizontally conformal submersions from CR-submanifolds of locally conformal Kaehler manifolds, Mediterr. J. Math., 17 (2020), 26. https://doi.org/10.1007/s00009-019-1461-4 doi: 10.1007/s00009-019-1461-4
    [39] B. Watson, Almost Hermitian submersions, J. Differential Geom., 11 (1976), 147–165. https://doi.org/10.4310/jdg/1214433303 doi: 10.4310/jdg/1214433303
    [40] D. W. Yoon, Inequality for Ricci curvature of slant submanifolds in cosymplectic space forms, Turk. J. Math., 30 (2006), 43–56.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(961) PDF downloads(68) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog