Research article Special Issues

Dynamics of a fractal-fractional mathematical model for the management of waste plastic in the ocean with four different numerical approaches

  • Received: 14 January 2025 Revised: 04 April 2025 Accepted: 08 April 2025 Published: 17 April 2025
  • MSC : 34A08, 34A34, 34D20, 65L05

  • This work studies a fractional model in the context of the fractal-fractional operator involving a power law kernel for waste plastic in the ocean consisting of waste plastic material, marine debris, and reprocessing. The novelty of this study lies in utilizing the fractal-fractional framework to analyze the behavior of the proposed model and derive qualitative theoretical results. We investigated the equilibrium points and analyzed their stability using the basic reproduction number. We examined the global stability of possible equilibrium points, as well as their unstable conditions. The sensitivity analysis can also help to better understand the model's dynamics better. The existence and uniqueness of results were studied by utilizing Banach's contraction mapping principle, while Ulam's stability for the proposed model was also investigated. Furthermore, we derived the numerical algorithms by utilizing four different techniques, including the decomposition, Adams-Bashforth, Newton polynomial, and predictor-corrector methods. By providing the input factor values, we illustrated the graphic numerical simulations to enhance our understanding of the waste plastic process and optimize the control strategies. Moreover, we compare ordinary, fractional, and fractal-fractional derivatives in the sense of the Caputo type with the reported real data of $ 70 $ years.

    Citation: Chatthai Thaiprayoon, Jutarat Kongson, Weerawat Sudsutad. Dynamics of a fractal-fractional mathematical model for the management of waste plastic in the ocean with four different numerical approaches[J]. AIMS Mathematics, 2025, 10(4): 8827-8872. doi: 10.3934/math.2025405

    Related Papers:

  • This work studies a fractional model in the context of the fractal-fractional operator involving a power law kernel for waste plastic in the ocean consisting of waste plastic material, marine debris, and reprocessing. The novelty of this study lies in utilizing the fractal-fractional framework to analyze the behavior of the proposed model and derive qualitative theoretical results. We investigated the equilibrium points and analyzed their stability using the basic reproduction number. We examined the global stability of possible equilibrium points, as well as their unstable conditions. The sensitivity analysis can also help to better understand the model's dynamics better. The existence and uniqueness of results were studied by utilizing Banach's contraction mapping principle, while Ulam's stability for the proposed model was also investigated. Furthermore, we derived the numerical algorithms by utilizing four different techniques, including the decomposition, Adams-Bashforth, Newton polynomial, and predictor-corrector methods. By providing the input factor values, we illustrated the graphic numerical simulations to enhance our understanding of the waste plastic process and optimize the control strategies. Moreover, we compare ordinary, fractional, and fractal-fractional derivatives in the sense of the Caputo type with the reported real data of $ 70 $ years.



    加载中


    [1] M. Al. Nuwairan, Z. Sabir, M. A. Z. Raja, A. Aldhafeeri, An advance artificial neural network scheme to examine the waste plastic management in the ocean, AIP Adv., 12 (2022), 045211. https://doi.org/10.1063/5.0085737 doi: 10.1063/5.0085737
    [2] S. Chaturvedi, B. P. Yadav, N. A. Siddiqui, S. K. Chaturvedi, Mathematical modelling and analysis of plastic waste pollution and its impact on the ocean surface, J. Ocean Eng. Sci., 5 (2020), 136–163. https://doi.org/10.1016/j.joes.2019.09.005 doi: 10.1016/j.joes.2019.09.005
    [3] J. A. Addor, E. N. Wiah, F. I. Alao, Mathematical model for the cyclical dynamics of plastic waste management: A two-state closed model, J. Mater. Sci. Res. Rev., 5 (2022), 69–90.
    [4] M. Izadi, M. Parsamanesh, W. Adel, Numerical and stability investigations of the waste plastic management model in the Ocean system, Mathematics, 10 (2022), 4601. https://doi.org/10.3390/math10234601 doi: 10.3390/math10234601
    [5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, In: North-Holland mathematics studies, Elsevier, 204 (2006), 1–523.
    [6] U. N. Katugampola, New fractional integral unifying six existing fractional integrals, arXiv: 1612.08596, 2016. https://doi.org/10.48550/arXiv.1612.08596
    [7] D. Baleanu, A. Fernandez, A. Akgúl, On a fractional operator combining proportional and classical differintegrals, Mathematics, 8 (2020), 360. https://doi.org/10.3390/math8030360 doi: 10.3390/math8030360
    [8] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779
    [9] E. Uçara, N. Özdemir, A fractional model of cancer-immune system with Caputo and Caputo-Fabrizio derivatives, Eur. Phys. J. Plus, 136 (2021), 43. https://doi.org/10.1140/epjp/s13360-020-00966-9 doi: 10.1140/epjp/s13360-020-00966-9
    [10] W. Sudsutad, J. Kongson, C. Thaiprayoon, On generalized $(k, \psi)$-Hilfer proportional fractional operator and its applications to the higher-order Cauchy problem, Bound. Value Probl., 2024 (2024), 83. https://doi.org/10.1186/s13661-024-01891-x doi: 10.1186/s13661-024-01891-x
    [11] A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
    [12] N. Almutairi, S. Saber, On chaos control of nonlinear fractional Newton-Leipnik system via fractional Caputo-Fabrizio derivatives, Sci. Rep., 13 (2023), 22726. https://doi.org/10.1038/s41598-023-49541-z doi: 10.1038/s41598-023-49541-z
    [13] T. Yan, M. Alhazmi, M. Y. Youssif, A. E. Elhag, A. F. Aljohani, S. Saber, Analysis of a Lorenz model using adomian decomposition and fractal-fractional operators, Thermal Sci., 28 (2024), 5001–5009. https://doi.org/10.2298/TSCI2406001Y doi: 10.2298/TSCI2406001Y
    [14] K. A. Aldwoah, M. A. Almalahi, K. Shah, M. Awadalla, R. H. Egami, Dynamics analysis of dengue fever model with harmonic mean type under fractal-fractional derivative, AIMS Mathematics, 9 (2024), 13894–13926. https://doi.org/10.3934/math.2024676 doi: 10.3934/math.2024676
    [15] K. A. Aldwoah, M. A. Almalahi, K. Shah, Theoretical and numerical simulations on the hepatitis B virus model through a piecewise fractional order, Fractal Fract., 7 (2023), 84. https://doi.org/10.3390/fractalfract7120844 doi: 10.3390/fractalfract7120844
    [16] M. Al Nuwairan, Z. Sabir, M. A. Z. Raja, M. Alnami, H. Almuslem, A stochastic study of the fractional order model of waste plastic in oceans, Comput. Mater. Continua, 73 (2022), 4441–4454. https://doi.org/10.32604/cmc.2022.029432 doi: 10.32604/cmc.2022.029432
    [17] H. Joshi, M. Yavuz, N. Özdemir, Analysis of novel fractional order plastic waste model and its effects on air pollution with treatment mechanism, J. Appl. Anal. Comput., 14 (2024), 3078–3098. https://doi.org/10.11948/20230453 doi: 10.11948/20230453
    [18] P. Priya, A. Sabarmathi, Optimal control on ABC fractal fractional order model of micro-plastic pollution in soil and its effect on the nutrient cycle, J. Comput. Appl. Math., 450 (2024), 115997. https://doi.org/10.1016/j.cam.2024.115997 doi: 10.1016/j.cam.2024.115997
    [19] M. Parsamanesh, M. Izadi, Global stability and bifurcations in a mathematical model for the waste plastic management in the ocean, Sci. Rep., 14 (2024), 20328. https://doi.org/10.1038/s41598-024-71182-z doi: 10.1038/s41598-024-71182-z
    [20] S. M. Ulam, A collection of mathematical problems, New York: Interscience Publishers, Inc., 1960.
    [21] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A., 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
    [22] T. M. Rassias, On the stability of the linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. https://doi.org/10.2307/2042795 doi: 10.2307/2042795
    [23] A. Atangana, S. Qureshi, Modeling attractors of chaotic dynamical systems with fractal-fractional operators, Chaos Solitons Fract., 123 (2019), 320–337. https://doi.org/10.1016/j.chaos.2019.04.020 doi: 10.1016/j.chaos.2019.04.020
    [24] C. Vargas-De-Léon, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 75–85. http://dx.doi.org/10.1016/j.cnsns.2014.12.013 doi: 10.1016/j.cnsns.2014.12.013
    [25] A. Atangana, A. Akgül, On solutions of fractal fractional differential equations, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 3441–3457. https://doi.org/10.3934/dcdss.2020421 doi: 10.3934/dcdss.2020421
    [26] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [27] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [28] D. Matignon, Stability results for fractional differential equations with applications to control processing, Comput. Eng. Syst. Appl., 2 (1996), 963–968.
    [29] M. Y. Li, H. L. Smith, L. Wang, Global dynamics of an SEIR epidemic model with vertical transmission, SIAM J. Appl. Math., 62 (2001), 58–69. https://doi.org/10.1137/S0036139999359860 doi: 10.1137/S0036139999359860
    [30] P. van den Driessche, Reproduction numbers of infectious disease models, Infect. Dis. Model., 2 (2017), 288–303. http://dx.doi.org/10.1016/j.idm.2017.06.002 doi: 10.1016/j.idm.2017.06.002
    [31] A. Granas, J. Dugundji, Fixed point theory, In: Springer monographs in mathematics, New York: Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8
    [32] R. Almeida, A. B. Malinowska, T. Odzijewicz, Fractional differential equations with dependence on the Caputo-Katugampola derivative, J. Comput. Nonlinear Dynam., 11 (2016), 061017. https://doi.org/10.1115/1.4034432 doi: 10.1115/1.4034432
    [33] W. Sudsutad, C. Thaiprayoon, A. Aphithana, J. Kongson, W. Sae-Dan, Qualitative results and numerical approximations of the $(k, \psi)$-Caputo proportional fractional differential equations and applications to blood alcohol levels model, AIMS Mathematics, 9 (2024), 34013–34041. https://doi.org/10.3934/math.20241622 doi: 10.3934/math.20241622
    [34] W. Sudsutad, C. Thaiprayoon, J. Kongson, W. Sae-Dan, A mathematical model for fractal-fractional monkeypox disease and its application to real data, AIMS Mathematics, 9 (2024), 8516–8563. https://doi.org/10.3934/math.2024414 doi: 10.3934/math.2024414
    [35] A. Atangana, S. I. Araz, New numerical scheme with Newton polynomial—Theory, methods, and applications, Academic Press, 2021. https://doi.org/10.1016/C2020-0-02711-8
    [36] Z. Odibat, D. Baleanu, Numerical simulation of initial value problems with generalized Caputo-type fractional derivatives, Appl. Numer. Math., 156 (2021), 94–105. https://doi.org/10.1016/j.apnum.2020.04.015 doi: 10.1016/j.apnum.2020.04.015
    [37] J. Kongson, C. Thaiprayoon, A. Neamvonk, J. Alzabut, W. Sudsutad, Investigation of fractal-fractional HIV infection by evaluating the drug therapy effect in the Atangana-Baleanu sense, Math. Biosci. Eng., 19 (2022), 10762–10808. https://doi.org/10.3934/mbe.2022504 doi: 10.3934/mbe.2022504
    [38] L. Lebreton, M. Egger, B. Slat, A global mass budget for positively buoyant macroplastic debris in the ocean, Sci. Rep., 9 (2019), 12922. https://doi.org/10.1038/s41598-019-49413-5 doi: 10.1038/s41598-019-49413-5
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1174) PDF downloads(88) Cited by(0)

Article outline

Figures and Tables

Figures(15)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog