Research article Special Issues

The second main theorem with moving hypersurfaces in subgeneral position

  • Received: 23 November 2024 Revised: 02 April 2025 Accepted: 02 April 2025 Published: 17 April 2025
  • MSC : 32A22, 32H30

  • In this paper, we prove a second main theorem for a holomorphic curve $ f $ into $ \mathbb P^N (\mathbb C) $ with a family of slowly moving hypersurfaces $ D_1, ..., D_q $ with respect to $ f $ in $ m $-subgeneral position, proving an inequality with factor $ 3 \over 2 $. The motivation comes from the recent result of Heier and Levin.

    Citation: Qili Cai, Chin-Jui Yang. The second main theorem with moving hypersurfaces in subgeneral position[J]. AIMS Mathematics, 2025, 10(4): 8818-8826. doi: 10.3934/math.2025404

    Related Papers:

  • In this paper, we prove a second main theorem for a holomorphic curve $ f $ into $ \mathbb P^N (\mathbb C) $ with a family of slowly moving hypersurfaces $ D_1, ..., D_q $ with respect to $ f $ in $ m $-subgeneral position, proving an inequality with factor $ 3 \over 2 $. The motivation comes from the recent result of Heier and Levin.



    加载中


    [1] G. Heier, A. Levin, A generalized Schmidt subspace theorem for closed subschemes, Amer. J. Math., 143 (2021), 213–216. https://doi.org/10.1353/ajm.2021.0008 doi: 10.1353/ajm.2021.0008
    [2] G. Heier, A. Levin, A Schmit-Nochka theorem for closed subschemes in subgeneral position, J. Reine Angew. Math., 2025 (2025), 205–229.
    [3] R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Paris: Gauthier-Villars, 1929. https://doi.org/10.1007/BF01699341
    [4] C. F. Osgood, Sometimes effective Thue-Siegel-Roth-Schmidt-Nevanlinna bounds, or better, J. Number Theory, 21 (1985), 347–389. https://doi.org/10.1016/0022-314X(85)90061-7 doi: 10.1016/0022-314X(85)90061-7
    [5] M. Ru, W. Stoll, The Cartan conjecture for moving targets, 1991.
    [6] D. Q. Si, Meromorphic mappings into projective varieties with arbitrary families of moving hypersurfaces, J. Geom. Anal., 32 (2022), 52. https://doi.org/10.1007/s12220-021-00765-3 doi: 10.1007/s12220-021-00765-3
    [7] L. Shi, Q. Yan, G. Yu, Second main theorems for holomorphic curves in the projective space with slowly moving hypersurfaces, Acta. Math. Sin. English Ser., 2024. https://doi.org/10.1007/s10114-024-3393-6 doi: 10.1007/s10114-024-3393-6
    [8] N. Steinmetz, Eine verallgemeinerung des zweiten Nevanlinnaschen hauptsatzes, J. Reine Angew. Math., 368 (1986), 134–141.
    [9] P. Vojta, On the Nochka-Chen-Ru-Wong proof of Cartan's conjecture, J. Number Theory, 125 (2007), 229–234. https://doi.org/10.1016/j.jnt.2006.10.014 doi: 10.1016/j.jnt.2006.10.014
    [10] K. Yamanoi, The second main theorem for small functions and related problems, Acta Math., 192 (2004), 225–294. https://doi.org/10.1007/BF02392741 doi: 10.1007/BF02392741
    [11] Q. M. Yan, G. S. Yu, Cartan's conjecture for moving hypersurfaces, Math. Z., 292 (2019), 1052–1067. https://doi.org/10.1007/s00209-018-2138-6 doi: 10.1007/s00209-018-2138-6
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(724) PDF downloads(55) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog