In this paper, we prove a second main theorem for a holomorphic curve $ f $ into $ \mathbb P^N (\mathbb C) $ with a family of slowly moving hypersurfaces $ D_1, ..., D_q $ with respect to $ f $ in $ m $-subgeneral position, proving an inequality with factor $ 3 \over 2 $. The motivation comes from the recent result of Heier and Levin.
Citation: Qili Cai, Chin-Jui Yang. The second main theorem with moving hypersurfaces in subgeneral position[J]. AIMS Mathematics, 2025, 10(4): 8818-8826. doi: 10.3934/math.2025404
In this paper, we prove a second main theorem for a holomorphic curve $ f $ into $ \mathbb P^N (\mathbb C) $ with a family of slowly moving hypersurfaces $ D_1, ..., D_q $ with respect to $ f $ in $ m $-subgeneral position, proving an inequality with factor $ 3 \over 2 $. The motivation comes from the recent result of Heier and Levin.
| [1] |
G. Heier, A. Levin, A generalized Schmidt subspace theorem for closed subschemes, Amer. J. Math., 143 (2021), 213–216. https://doi.org/10.1353/ajm.2021.0008 doi: 10.1353/ajm.2021.0008
|
| [2] | G. Heier, A. Levin, A Schmit-Nochka theorem for closed subschemes in subgeneral position, J. Reine Angew. Math., 2025 (2025), 205–229. |
| [3] | R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Paris: Gauthier-Villars, 1929. https://doi.org/10.1007/BF01699341 |
| [4] |
C. F. Osgood, Sometimes effective Thue-Siegel-Roth-Schmidt-Nevanlinna bounds, or better, J. Number Theory, 21 (1985), 347–389. https://doi.org/10.1016/0022-314X(85)90061-7 doi: 10.1016/0022-314X(85)90061-7
|
| [5] | M. Ru, W. Stoll, The Cartan conjecture for moving targets, 1991. |
| [6] |
D. Q. Si, Meromorphic mappings into projective varieties with arbitrary families of moving hypersurfaces, J. Geom. Anal., 32 (2022), 52. https://doi.org/10.1007/s12220-021-00765-3 doi: 10.1007/s12220-021-00765-3
|
| [7] |
L. Shi, Q. Yan, G. Yu, Second main theorems for holomorphic curves in the projective space with slowly moving hypersurfaces, Acta. Math. Sin. English Ser., 2024. https://doi.org/10.1007/s10114-024-3393-6 doi: 10.1007/s10114-024-3393-6
|
| [8] | N. Steinmetz, Eine verallgemeinerung des zweiten Nevanlinnaschen hauptsatzes, J. Reine Angew. Math., 368 (1986), 134–141. |
| [9] |
P. Vojta, On the Nochka-Chen-Ru-Wong proof of Cartan's conjecture, J. Number Theory, 125 (2007), 229–234. https://doi.org/10.1016/j.jnt.2006.10.014 doi: 10.1016/j.jnt.2006.10.014
|
| [10] |
K. Yamanoi, The second main theorem for small functions and related problems, Acta Math., 192 (2004), 225–294. https://doi.org/10.1007/BF02392741 doi: 10.1007/BF02392741
|
| [11] |
Q. M. Yan, G. S. Yu, Cartan's conjecture for moving hypersurfaces, Math. Z., 292 (2019), 1052–1067. https://doi.org/10.1007/s00209-018-2138-6 doi: 10.1007/s00209-018-2138-6
|