The sequence
$ a_n = \sqrt[n+1]{(n+1)!\, }-\sqrt[n]{n!\, } $
is called the Lalescu sequence, after the Romanian mathematician Traian Lalescu (1882–1929). We prove that this sequence is monotonically decreasing.
Citation: Carlo Mantegazza, Nicola Pio Melillo. A note on the Lalescu sequence[J]. AIMS Mathematics, 2025, 10(3): 7526-7539. doi: 10.3934/math.2025346
The sequence
$ a_n = \sqrt[n+1]{(n+1)!\, }-\sqrt[n]{n!\, } $
is called the Lalescu sequence, after the Romanian mathematician Traian Lalescu (1882–1929). We prove that this sequence is monotonically decreasing.
| [1] | T. Lalescu, Problem 579, Gaz. Mat. (Bucharest), 6 (1900), 148. |
| [2] |
J. M. Patin, A very short proof of Stirling's formula, Amer. Math. Monthly, 96 (1989), 41–42. https://doi.org/10.1080/00029890.1989.11972144 doi: 10.1080/00029890.1989.11972144
|
| [3] |
H. Robbins, A remark on Stirling's formula, Amer. Math. Monthly, 62 (1955), 26–29. https://doi.org/10.2307/2308012 doi: 10.2307/2308012
|
| [4] | W. Rudin, Principles of mathematical analysis, McGraw-Hill Science, 1976. |
| [5] | D. P. Sanders, L. Benet, Interval Arithmetic.jl, 2014. Available from: https://github.com/JuliaIntervals/IntervalArithmetic.jl. |
| [6] | J. Sándor, Sur la fonction Gamma, Publ. C. Rech. Math. Pures Univ. Neuchâtel, Sér. I, 21 (1989), 4–7. |
| [7] | J. Sándor, Selected chapters of geometry, analysis and number theory. Classical topics in new perspectives, Lambert Academic Publishing, 2008. |
| [8] | E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge University Press, 2021. https://doi.org/10.1017/9781009004091 |
| [9] | Wikipedia, Stirling's approximation. Available from: http://en.wikipedia.org/wiki/Stirling's_approximation. |
| [10] | Wikipedia, Traian Lalescu. Available from: https://en.wikipedia.org/wiki/Traian_Lalescu. |