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Abstract: The sequence
an =

n+1
√

(n + 1)! −
n√
n!

is called the Lalescu sequence, after the Romanian mathematician Traian Lalescu (1882–1929). We
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1. The Lalescu sequence

The following sequence
an =

n+1
√

(n + 1)! −
n√
n!

is called the Lalescu sequence, after the Romanian mathematician Traian Lalescu (1882–1929,
see [10]), who proposed it in [1], asking about its convergence. Possibly due to its indubitable
elegance, on one hand, and its not–so–straightforward analysis, on the other, it attracted various
authors, who discussed its properties and generalizations (we underline the evident connection with
Stirling’s formula and Euler’s Gamma function).

The property of decreasing monotonicity was shown by József Sándor by a careful analysis of the
properties of some functions related to the Gamma function in [6] (see [7, Chapter 5, Section 11] for an
English translation), while our proof is a quite complex example of asymptotic analysis and of how one
can deal very accurately with the orders of infinitesimals of sequences. Moreover, this line of analysis
can actually be applied to a broader class of related sequences.

Before starting, let us make clear the connection between the Euler’s Gamma function Γ and the
Lalescu sequence (in particular, its monotonicity). It is well known that n! = Γ(n + 1), then setting,

F(x) = Γ(x + 1)1/x and A(x) = F(x + 1) − F(x),

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2025346


7527

for every x > 0, we have F(n) = n√n! and

an = F(n + 1) − F(n) = Γ(n + 2)
1

n+1 − Γ(n + 1)
1
n = A(n).

Hence, the decreasing monotonicity of an would follow from the analogous monotonicity of the
function A, involving Γ. Moreover, we can also obtain it if we are able to show that

F(x + 2) − F(x + 1) < F(x + 1) − F(x) ⇐⇒
F(x + 2) + F(x)

2
< F(x + 1),

for every x > 0. The last inequality is clearly implied by the strict concavity of F, hence of the function

x 7→ Γ(x + 1)1/x.

This is exactly the line followed by Sándor, who proved such concavity in [6] ( [7, Chapter 5,
Section 11]).

We begin by reviewing some basic facts.
If we suppose that the sequence converges, considering the two sequences n√n! and n, by means of

the Stolz-Cesaro theorem, we have

lim
n→∞

n+1
√

(n + 1)! −
n√
n! = lim

n→∞

n√n!
n
= 1/e ,

as the last limit is well-known. It actually also follows from the Cesaro-type result (see [4], for instance)

lim
n→∞

xn+1

xn
= ℓ =⇒ lim

n→∞
n
√

xn = ℓ,

considering xn = n!/nn.
Alternatively, still assuming that the sequence an converges to some limit, we have that the sequence

given by its arithmetic means ∑n
k=1 ak

n
converges to the same limit. So we conclude

lim
n→∞

n+1
√

(n + 1)! −
n√
n! = lim

n→∞

∑n
k=1 ak

n
= lim

n→∞

n+1√(n + 1)! − 1
n

= 1/e .

Thus, the tricky part is actually showing that the Lalescu sequence converges. This can be shown by
means of Stirling’s formula [2, 8, 9]: we rewrite the sequence as

n+1
√

(n + 1)! −
n√
n! =

n√
n!
(
elog(n+1)!/(n+1)−log n!/n − 1

)
and examine the exponent of e:

log(n + 1)!
n + 1

−
log n!

n
=

n log(n + 1) − log n!
n(n + 1)

=
n log(n + 1) + n log n − n log n − n log n√n!

n(n + 1)

=
n log(1 + 1/n) + n log(n/ n√n!)

n(n + 1)

=
log(1 + 1/n) + log(n/ n√n!)

(n + 1)
.
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Then, since n/ n√n!→ e, we have that the exponent is equal to

1/(n + 1) + o(1/n).

If we consider that, by Stirling’s formula,

n√
n! ≈ n/e ,

we get
n√
n!
(
elog(n+1)!/(n+1)−log n!/n − 1

)
≈

n/e
n + 1

+ o(1)→ 1/e .

An alternative line, without the use of Stirling’s formula, goes as follows: we rewrite the sequence as

n+1
√

(n + 1)! −
n√
n! =

n√n!
n

( n+1√(n + 1)!
n√n!

− 1
)
n,

and we observe that( n+1√(n + 1)!
n√n!

)n
=

( (n + 1)!n

n!n+1

) 1
n+1

=

( (n + 1)n

n!

) 1
n+1

=

(n + 1
n√n!

) n
n+1

→ e , (1.1)

as it is well known that n/ n√n!→ e, which implies(n + 1
n√n!

) n
n+1

=

( n
n√n!

) n
n+1
(n + 1

n

) n
n+1

→ e .

Then,

n+1
√

(n + 1)! −
n√
n! =

n√n!
n
·

n+1√(n+1)!
n√n!

− 1

log
(
1 +
(

n+1√(n+1)!
n√n!

− 1
)) · log

(
1 +
( n+1√(n + 1)!

n√n!
− 1
))n

=

n√n!
n
·

n+1√(n+1)!
n√n!

− 1

log
(
1 +
(

n+1√(n+1)!
n√n!

− 1
)) · log

( n+1√(n + 1)!
n√n!

)n
→ 1/e ,

for n → ∞. Indeed, the first factor tends to 1/e, while the second and third go to 1, by the limit (1.1)
and

n+1√(n + 1)!
n√n!

→ 1

which again follows by n/ n√n!→ e.
Another “natural” way to show the convergence of the sequence would be to prove that it is bounded

and monotone. The boundedness from below is actually easy: the sequence an is positive, for every
n ∈ N. Indeed, when above we expressed the sequence as

n+1
√

(n + 1)! −
n√
n! =

n√
n!
(
elog(n+1)!/(n+1)−log n!/n − 1

)
,
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we have seen that the exponent of e is given by

log(n + 1)!
n + 1

−
log n!

n
=

log(1 + 1/n) + log(n/ n√n!)
(n + 1)

,

that is positive, since 1 + 1/n and n/ n√n! are both greater than 1, hence the positivity of an.
Unfortunately, the monotonicity, that is, the fact that an is decreasing (as one could expect), is not
present in literature, up to our knowledge, and it turns out to be absolutely non trivial.

Our contribution to the study of the Lalescu sequence is then to show such monotonicity, first
eventually (from some n ∈ N on, which is clearly sufficient for the convergence) and then fully (for
every n ∈ N).

As we will see in the next section, our analysis requires a more refined version of Stirling’s formula
than the “standard” one (a “higher order” expansion of n!, formula (2.3)) and some quite precise
estimates from above and below on n! (formula (2.8)). Moreover, to obtain the full monotonicity, some
numerical check is also needed in order to deal with the “small” values of n ∈ N.

Let us say that we think that what follows can be seen as an interesting (and tough) problem about
dealing with orders of infinitesimals by means of Taylor expansions and estimates.

2. Decreasing monotonicity

We set ℓn =
n√n! . Clearly, for every n ∈ N, we have ℓn > 0.

To see that the sequence
an =

n+1
√

(n + 1)! −
n√
n!

is decreasing, we are going to prove equivalently that

ℓn+2

ℓn+1
+
ℓn
ℓn+1
< 2 . (2.1)

Defining

xn = log
ℓn+1

ℓn
,

the inequality (2.1) can then be written as

exp(xn+1) + exp(−xn) = 2 exp
( xn+1 − xn

2

)
cosh
( xn+1 + xn

2

)
< 2 . (2.2)

The ratio ℓn+1
ℓn

is a natural quantity to study, measuring the relative growth between consecutive terms
and providing a better understanding of the asymptotic behavior of ℓn, passing from one term to the
next. Moreover, taking the logarithm makes it easier to finely analyze such passages.

2.1. Eventual monotonicity

We are going to use the following “enhanced” Stirling’s formula (see [9]),

n! =
√

2πn
(n
e

)n(
1 +

1
12n
+

1
288n2 + O

( 1
n3

))
AIMS Mathematics Volume 10, Issue 3, 7526–7539.
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=
√

2πn
(n
e

)n(
1 +

1
12n
+

1
288n2 + o

( 1
n2

))
. (2.3)

Then,

log ℓn =
log(2πn)

2n
+ log n − 1 +

1
n

log
(
1 +

1
12n
+

1
288n2 + o

( 1
n2

))
.

Expanding in Taylor series up to o(1/n3), we obtain

log ℓn = log n − 1 +
log n
2n
+

log(2π)
2n

+
1

12n2 −
1

360n4 + o
( 1
n4

)
= log n − 1 +

log n
2n
+

log(2π)
2n

+
1

12n2 + o
( 1
n3

)
.

Hence,

xn = log
ℓn+1

ℓn
= log(n + 1) − 1 +

log(n + 1)
2(n + 1)

+
log(2π)
2(n + 1)

+
1

12(n + 1)2 + o
( 1
n3

)
− log n + 1 −

log n
2n
−

log(2π)
2n

−
1

12n2 + o
( 1
n3

)
= log(1 + 1/n) +

n log(1 + 1/n) − log n
2n(n + 1)

−
log(2π)

2n(n + 1)
−

2n + 1
12n2(n + 1)2 + o

( 1
n3

)
= log(1 + 1/n) +

log(1 + 1/n)
2(n + 1)

−
log n

2n(n + 1)
−

log(2π)
2n(n + 1)

−
1

6n2(n + 1)
+ o
( 1
n3

)
=

1
n
−

log n
2n(n + 1)

−
log(2π)

2n(n + 1)
−

1
2n2 +

1
2n(n + 1)

+
1

3n3 −
1

6n2(n + 1)
−

1
4n2(n + 1)

+ o
( 1
n3

)
=

1
n
−

log n
2n(n + 1)

−
log(2π)

2n(n + 1)
−

7
12n3 + o

( 1
n3

)
.

So we have

xn+1 − xn =
1

n + 1
−

log(n + 1)
2(n + 1)(n + 2)

−
log(2π)

2(n + 1)(n + 2)
−

7
12(n + 1)3

−
1
n
+

log n
2n(n + 1)

+
log(2π)

2n(n + 1)
+

7
12n3 + o

( 1
n3

)
= −

1
n(n + 1)

−
n log(n + 1) − (n + 2) log n

2n(n + 1)(n + 2)
+

log(2π)
n(n + 1)(n + 2)

+ o
( 1
n3

)
= −

1
n(n + 1)

−
n log(1 + 1/n) − 2 log n

2n(n + 1)(n + 2)
+

log(2π)
n3 + o

( 1
n3

)
= −

1
n(n + 1)

+
log n

n3 −
1

2n3 +
log(2π)

n3 + o
( 1
n3

)
= −

1
n2 +

log n
n3 +

1
n3 −

1
2n3 +

log(2π)
n3 + o

( 1
n3

)
= −

1
n2 +

log n
n3 +

1 + 2 log(2π)
2n3 + o

( 1
n3

)
.
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For the sum xn+1 + xn we expand in Taylor series up to the term n−2.

xn+1 + xn =
1

n + 1
−

log(n + 1)
2(n + 1)(n + 2)

−
log(2π)

2(n + 1)(n + 2)

+
1
n
−

log n
2n(n + 1)

−
log(2π)

2n(n + 1)
+ o
( 1
n2

)
=

2n + 1
n(n + 1)

−
n log(n + 1) + (n + 2) log n

2n(n + 1)(n + 2)
−

log(2π)
n(n + 1)

+ o
( 1
n2

)
=

2n + 1
n(n + 1)

−
log[n(n + 1)]

2n(n + 1)
−

log(2π)
n(n + 1)

+ o
( 1
n2

)
=

2
n
−

log[n(n + 1)]
2n(n + 1)

−
1 + log(2π)

n2 + o
( 1
n2

)
.

It follows, expanding up to o(1/n3),

(xn+1 + xn)2 =

(2
n
−

log[n(n + 1)]
2n(n + 1)

−
1 + log(2π)

n2 + o
( 1
n2

))2
=

4
n2 − 2

log[n(n + 1)]
n2(n + 1)

−
4(1 + log(2π))

n3 + o
( 1
n3

)
=

4
n2 − 4

log n
n3 −

4(1 + log(2π))
n3 + o

( 1
n3

)
.

Developing then in Taylor series formula (2.2), we obtain

2 exp
( xn+1 − xn

2

)
cosh
( xn+1 + xn

2

)
= 2
(
1 +

xn+1 − xn

2
+ . . .

)(
1 +

1
2

( xn+1 + xn

2

)2
+ . . .

)
= 2
(
1 −

1
2n2 +

log n
2n3 +

1 + 2 log(2π)
4n3 + o

( 1
n3

))
·

(
1 +

1
8

( 4
n2 − 4

log n
n3 −

4(1 + log(2π))
n3 + o

( 1
n3

)))
= 2
(
1 −

1
2n2 +

log n
2n3 +

1 + 2 log(2π)
4n3 + o

( 1
n3

))
·

(
1 +

1
2n2 −

log n
2n3 −

1 + log(2π)
2n3 + o

( 1
n3

))
= 2 −

1
2n3 + o

( 1
n3

)
,

which is clearly smaller than 2, for large n ∈ N.

Therefore, the Lalescu sequence is eventually decreasing, by formula (2.2).

2.2. Full monotonicity

We will use the following “standard” inequalities.

x − x2/2 ⩽ log(1 + x) ⩽ x, (2.4)
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x − x2/2 + x3/3 − x4/4 ⩽ log(1 + x) ⩽ x − x2/2 + x3/3, (2.5)

1 − x ⩽
1

1 + x
⩽ 1 − x + x2, (2.6)

which are valid for x > 0.
Furthermore,

ex ⩽
1

1 − x
and cosh x ⩽

1
1 − x2/2

, (2.7)

for x ∈ (−1, 1). The second inequality above can be shown by comparing the Taylor series, which
converge uniformly in the interval [−1, 1],

cosh x =
∞∑

i=0

x2n

(2n)!
and

1
1 − x2/2

=

∞∑
i=0

x2n

2n ,

noticing that 2n ⩽ (2n)!, for every n ∈ N.
From the following estimates due to Robbins [3],

√
2πn
(n
e

)n
e

1
12n+1 ⩽ n! ⩽

√
2πn
(n
e

)n
e

1
12n , (2.8)

holding for every n ∈ N, it follows that

log(2πn)
2n

+ log n − 1 +
1

(12n + 1)n
⩽ log ℓn ⩽

log(2πn)
2n

+ log n − 1 +
1

12n2 .

Thus,

xn = log
ℓn+1

ℓn
⩽ log(n + 1) − 1 +

log(n + 1)
2(n + 1)

+
log(2π)
2(n + 1)

+
1

12(n + 1)2

− log n + 1 −
log n
2n
−

log(2π)
2n

−
1

(12n + 1)n

= log(1 + 1/n) +
n log(1 + 1/n) − log n

2n(n + 1)
−

log(2π)
2n(n + 1)

−
23n + 12

12(12n + 1)(n + 1)2n

= log(1 + 1/n) +
log(1 + 1/n)

2(n + 1)
−

log n
2n(n + 1)

−
log(2π)

2n(n + 1)
−

23n + 12
12(12n + 1)(n + 1)2n

.

Then, applying the inequality on the right side of formula (2.5) to log(1 + 1/n), we have

xn ⩽
1
n
−

log n
2n(n + 1)

−
log(2π)

2n(n + 1)
−

23n + 12
12(12n + 1)(n + 1)2n

−
1

2n2 +
1

2n(n + 1)

+
1

3n3 −
1

4n2(n + 1)
+

1
6n3(n + 1)

=
1
n
−

log n
2n(n + 1)

−
log(2π)

2n(n + 1)
−

23n + 12
12(12n + 1)(n + 1)2n

−
1

2n2(n + 1)

+
1

12n3 +
5

12n3(n + 1)

=
1
n
−

log n
2n(n + 1)

−
log(2π)

2n(n + 1)
−

23n + 12
12(12n + 1)(n + 1)2n

−
5

12n3 +
11

12n3(n + 1)
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⩽
1
n
−

log n
2n(n + 1)

−
log(2π)

2n(n + 1)
−

23n + 12
12(12n + 1)(n + 1)2n

−
5

12n3 +
11

12n4 ,

where in the last step, we estimated 1
12n3(n+1) ⩽

1
12n4 .

By the inequality on the left side of formula (2.6), we have

23
12(12n + 1)(n + 1)2 =

23

144n3
(
1 + 25

12n +
7

6n2 +
1

12n3

)
⩾

23
144n3

(
1 −

25
12n
−

7
6n2 −

1
12n3

)
⩾

23
144n3 −

1
2n4 ,

for every n ⩾ 2, therefore

xn ⩽
1
n
−

log n
2n(n + 1)

−
log(2π)

2n(n + 1)
−

23
144n3 +

1
2n4 −

5
12n3 +

11
12n4

⩽
1
n
−

log n
2n(n + 1)

−
log(2π)

2n(n + 1)
−

83
144n3 +

3
2n4 . (2.9)

Furthermore, it is easily seen that, when n ⩾ 3, this inequality implies the “simpler” inequality

xn ⩽
1
n
−

log n
2n(n + 1)

−
log(2π)

2n(n + 1)
, (2.10)

which will be useful later.
Similarly, using the left inequalities in formulas (2.4) and (2.5) on log(1 + 1/n), we have

xn = log
ℓn+1

ℓn
⩾ log(1 + 1/n) +

n log(1 + 1/n) − log n
2n(n + 1)

−
log(2π)

2n(n + 1)
−

25n + 13
12(12n + 13)(n + 1)n2

⩾
1
n
−

log n
2n(n + 1)

−
log(2π)

2n(n + 1)
−

1
2n2 +

1
2n(n + 1)

−
25n + 13

12(12n + 13)(n + 1)n2 −
1

4n2(n + 1)

+
1

3n3 −
1

4n4

=
1
n
−

log n
2n(n + 1)

−
log(2π)

2n(n + 1)
−

25n + 13
12(12n + 13)(n + 1)n2 −

3
4n2(n + 1)

+
1

3n3 −
1

4n4

⩾
1
n
−

log n
2n(n + 1)

−
log(2π)

2n(n + 1)
−

25n + 13
12(12n + 13)(n + 1)n2 −

3
4n3 +

1
3n3 −

1
4n4

=
1
n
−

log n
2n(n + 1)

−
log(2π)
2n(n + 1

) −
25n + 13

12(12n + 13)(n + 1)n2 −
5

12n3 −
1

4n4

where, in the penultimate step, we estimated 3
4n2(n+1) ⩽

3
4n3 .

Since clearly
25n + 13

12(12n + 13)(n + 1)n2 ⩽
25

144n3 +
13

144n4 ,

we have

xn ⩾
1
n
−

log n
2n(n + 1)

−
log(2π)

2n(n + 1)
−

25
144n3 −

13
144n4 −

5
12n3 −

1
4n4
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=
1
n
−

log n
2n(n + 1)

−
log(2π)

2n(n + 1)
−

85
144n3 −

49
144n4 , (2.11)

which implies the “simpler” inequality

xn ⩾
1
n
−

log n
2n(n + 1)

−
log(2π)

2n(n + 1)
−

1
n3 , (2.12)

for each n ⩾ 1, which we will use later.
Let us then estimate the difference xn+1 − xn from above with the inequalities (2.9) and (2.11):

xn+1 − xn ⩽
1

n + 1
−

log(n + 1)
2(n + 1)(n + 2)

−
log(2π)

2(n + 1)(n + 2)
−

83
144(n + 1)3 +

3
2(n + 1)4

−
1
n
+

log n
2n(n + 1)

+
log(2π)

2n(n + 1)
+

85
144n3 +

49
144n4

⩽ −
1

n(n + 1)
−

n log(n + 1) − (n + 2) log n
2n(n + 1)(n + 2)

+
log(2π)

n(n + 1)(n + 2)

+
85(1 + 3n + 3n2) + 2n3

144n3(n + 1)3 +
49

144n4 +
3

2n4

⩽ −
1
n2 −

n log(1 + 1/n) − 2 log n
2n(n + 1)(n + 2)

+
log(2π)

n3 +
1
n3

+
85(1 + 3n + 3n2)

144n3(n + 1)3 +
2

144n3 +
265

144n4 ,

where in the last step we used − 1
n(n+1) = −

1
n2 +

1
n2(n+1) ⩽ −

1
n2 +

1
n3 .

Since 1 + 3n + 3n2 ⩽ 4n2, for n ⩾ 4, we have

xn+1 − xn ⩽ −
1
n2 −

log(1 + 1/n)
2(n + 1)(n + 2)

+
log n

n(n + 1)(n + 2)
+

log(2π)
n3

+
340

144n(n + 1)3 +
146

144n3 +
265

144n4

⩽ −
1
n2 −

log(1 + 1/n)
2(n + 1)(n + 2)

+
log n

n3 +
log(2π)

n3

+
340

144n4 +
146

144n3 +
265

144n4

= −
1
n2 −

log(1 + 1/n)
2(n + 1)(n + 2)

+
log n

n3 +
log(2π)

n3 +
146

144n3 +
605

144n4

and applying the left inequality in formula (2.4) to log(1 + 1/n), we conclude

xn+1 − xn ⩽ −
1
n2 −

1
2n(n + 1)(n + 2)

+
1

4n2(n + 1)(n + 2)
+

log n
n3 +

log(2π)
n3 +

146
144n3 +

605
144n4 .

⩽ −
1
n2 −

1
2n3 +

3
2n4 +

1
4n4 +

log n
n3 +

log(2π)
n3 +

146
144n3 +

605
144n4 .

⩽ −
1
n2 +

log n
n3 +

74/144 + log(2π)
n3 +

6
n4 ,
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for n ⩾ 4, where we used − 1
2n(n+1)(n+2) = −

1
2n3 +

3n+2
2n3(n+1)(n+2) ⩽ −

1
2n3 +

3
2n4 .

On the other hand, using the inequalities (2.10) and (2.12) to estimate xn+1− xn from below, we have

xn+1 − xn ⩾
1

n + 1
−

log(n + 1)
2(n + 1)(n + 2)

−
log(2π)

2(n + 1)(n + 2)
−

1
(n + 1)3

−
1
n
+

log n
2n(n + 1)

+
log(2π)

2n(n + 1)

= −
1

n(n + 1)
−

n log(n + 1) − (n + 2) log n
2n(n + 1)(n + 2)

−
1

(n + 1)3 +
log(2π)

n(n + 1)(n + 2)

= −
1
n2 +

1
n2(n + 1)

−
log(1 + 1/n)

2(n + 1)(n + 2)
+

log n
n(n + 1)(n + 2)

−
1

(n + 1)3 +
log(2π)

n(n + 1)(n + 2)

⩾ −
1
n2 −

1
2n(n + 1)(n + 2)

+
log n

n(n + 1)(n + 2)
+

log(2π)
n(n + 1)(n + 2)

⩾ −
1
n2 ,

for every n ∈ N.
Therefore, for n ⩾ 4, we conclude

−
1
n2 ⩽ xn+1 − xn ⩽ −

1
n2 +

log n
n3 +

74/144 + log(2π)
n3 +

6
n4 . (2.13)

Furthermore, noticing that the term on the right is certainly negative for n ⩾ 4, we have in such a case

(xn+1 − xn)2 ⩽
1
n4 .

Let us now estimate the sum xn+1 + xn using the inequality (2.10):

xn+1 + xn ⩽
1

n + 1
−

log(n + 1)
2(n + 1)(n + 2)

−
log(2π)

2(n + 1)(n + 2)
+

1
n
−

log n
2n(n + 1)

−
log(2π)

2n(n + 1)

=
2n + 1

n(n + 1)
−

n log(n + 1) + (n + 2) log n
2n(n + 1)(n + 2)

−
log(2π)
n(n + 2)

=
2n + 1

n(n + 1)
−

log[n(n + 1)]
2n(n + 1)

−
log(2π)
n(n + 2)

+
log(n + 1)

n(n + 1)(n + 2)

and applying inequalities

2n + 1
n(n + 1)

=
(2
n
+

1
n2

)( 1
1 + 1/n

)
⩽

2
n
−

1
n2 +

1
n3 +

1
n4 ⩽

2
n
−

1
n2 +

2
n3

log[n(n + 1)]
2n(n + 1)

⩾
log n

n(n + 1)
⩾

log n
n2 −

log n
n3

1
n(n + 1)

⩾
1
n2 −

1
n3

1
n(n + 2)

⩾
1
n2 −

2
n3
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(where in the first one we used the inequality on the right side of formula (2.6)), we obtain

xn+1 + xn ⩽
2
n
−

log n
n2 −

1 + log(2π)
n2 +

log n
n3 +

2 + 2 log(2π)
n3 +

log(n + 1)
n3 .

Then, considering the inequality

log n + 2 + 2 log(2π) + log(n + 1) ⩽
n

16
,

from which it obviously follows

log n
n3 +

2 + 2 log(2π)
n3 +

log(n + 1)
n3 ⩽

1
16n2 ,

and which holds for n ⩾ 271 (keeping in mind the concavity of the left–hand side and checking
numerically), we conclude

0 ⩽ xn+1 + xn ⩽
2
n
−

log n
n2 −

15/16 + log(2π)
n2 ⩽

2
n
, (2.14)

for every n ⩾ 271.
For n ⩾ 271, both y =

( xn+1−xn
2

)
and z =

( xn+1+xn
2

)
are smaller than 1 in absolute value, so we can use

the inequalities in formula (2.7) and evaluate

exp
( xn+1 − xn

2

)
= ey ⩽

1
1 − y

= 1 + y +
y2

1 − y
⩽ 1 + y + y2 ,

since y ⩽ 0 and

cosh
( xn+1 + xn

2

)
= cosh z ⩽

1
1 − z2/2

= 1 +
z2

2
+

z4

4(1 − z2/2)
⩽ 1 +

z2

2
+

z4

2
,

since z2 ⩽ 1. Therefore, for the inequalities (2.13)–(2.14), we obtain

2 exp
( xn+1 − xn

2

)
cosh
( xn+1 + xn

2

)
⩽
(
1 + y + y2) (1 + z2

2
+

z4

2

)
= 2
(
1 +

xn+1 − xn

2
+
( xn+1 − xn

2

)2)(
1 +

1
2

( xn+1 + xn

2

)2
+

1
2

( xn+1 + xn

2

)4)
⩽ 2
(
1 −

1
2n2 +

log n
2n3 +

74/144 + log(2π)
2n3 +

3
n4 +

1
4n4

)
·

(
1 +

1
2

(1
n
−

log n
2n2 −

15/16 + log(2π)
2n2

)2
+

1
2n4

)
= 2
(
1 −

1
2n2 +

log n
2n3 +

74/144 + log(2π)
2n3 +

13
4n4

)
·

(
1 +

1
2n2 −

15/16 + log(2π) + log n
2n3 +

(
16 log n + 15 + 16 log(2π)

)2
2048n4 +

1
2n4

)
= 2
(
1 −

1
2n2 +

log n
2n3 +

74/144 + log(2π)
2n3 +

13
4n4

)
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·

(
1 +

1
2n2 −

15/16 + log(2π) + log n
2n3 +

(
16 log n + 15 + 16 log(2π)

)2
+ 1024

2048n4

)
.

It is easy to show that (
16 log n + 15 + 16 log(2π)

)2
+ 1024

2048n4 ⩽
1

32n3 ,

for n ⩾ 304, hence

2 exp
( xn+1 − xn

2

)
cosh
( xn+1 + xn

2

)
⩽ 2
(
1 −

1
2n2 +

log n
2n3 +

74/144 + log(2π)
2n3 +

13
4n4

)(
1 +

1
2n2 −

14/16 + log(2π) + log n
2n3

)
⩽2
(
1 −

1
2n2 +

log n
2n3 +

76/144 + log(2π)
2n3

)(
1 +

1
2n2 −

log n
2n3 −

14/16 + log(2π)
2n3

)
,

for n ⩾ 468, since then 13
4n4 ⩽

1
144n3 . We therefore finally conclude that for n ⩾ 396, we have (after a

straightforward computation)

2 exp
( xn+1 − xn

2

)
cosh
( xn+1 + xn

2

)
⩽ 2
(
1 −

25
144n3 −

1
4n4 +

log(n)/2 +101/288 + log(2π)/2
n5

)
− 2

log n + 76/144 + log(2π)
2n3 ·

log n + 14/16 + log(2π)
2n3

< 2
(
1 −

25
144n3 −

1
4n4 +

log(n)/2 + 101/288 + log(2π)/2
n5

)
< 2,

since, by a numerical check, there holds

−
25

144
−

1
4n
+

log(n)/2 + 101/288 + log(2π)/2
n2 < 0

for each n ⩾ 3.
Since all the previous estimates are valid for n ⩾ 468, for such n ∈ N, the sequence is decreasing.

By numerically checking the decreasing for n = 1, . . . , 468, we then obtain that the Lalescu sequence
is always decreasing, remembering formula (2.2).

To numerically check the decreasing for n = 1, . . . , 468, we used the following code for the Julia-
Version 1.10.4 programming language, with the IntervalArithmetic.jl package [5]:

using IntervalArithmetic

function rootfactorial(n)

I = @interval(1)

exp = @interval(1) / @interval(n)

for j = 1:n

I = I * @interval(j)ˆexp

end

return I
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end

function lalescu(n)

return rootfactorial(n+1) - rootfactorial(n)

end

setdisplay(:full)

for k = 1:500

println("a_$(k) = $(lalescu(k))")

if !(precedes(lalescu(k), lalescu(k-1)))

@error("lalescu($k) is not guaranteed to be smaller

than lalescu($(k-1))")

end

end
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