
Research article

A note on the Lalescu sequence

Carlo Mantegazza* and **Nicola Pio Melillo**

Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Università di Napoli Federico II & Scuola Superiore Meridionale, Napoli, Italy

* **Correspondence:** Email: carlo.mantegazza@unina.it.

Abstract: The sequence

$$a_n = \sqrt[n+1]{(n+1)!} - \sqrt[n]{n!}$$

is called the Lalescu sequence, after the Romanian mathematician Traian Lalescu (1882–1929). We prove that this sequence is monotonically decreasing.

Keywords: Lalescu sequence; Stirling’s formula; convergence; monotonicity

Mathematics Subject Classification: 40A05

1. The Lalescu sequence

The following sequence

$$a_n = \sqrt[n+1]{(n+1)!} - \sqrt[n]{n!}$$

is called the Lalescu sequence, after the Romanian mathematician Traian Lalescu (1882–1929, see [10]), who proposed it in [1], asking about its convergence. Possibly due to its indubitable elegance, on one hand, and its not-so-straightforward analysis, on the other, it attracted various authors, who discussed its properties and generalizations (we underline the evident connection with Stirling’s formula and Euler’s Gamma function).

The property of decreasing monotonicity was shown by József Sándor by a careful analysis of the properties of some functions related to the Gamma function in [6] (see [7, Chapter 5, Section 11] for an English translation), while our proof is a quite complex example of asymptotic analysis and of how one can deal very accurately with the orders of infinitesimals of sequences. Moreover, this line of analysis can actually be applied to a broader class of related sequences.

Before starting, let us make clear the connection between the Euler’s Gamma function Γ and the Lalescu sequence (in particular, its monotonicity). It is well known that $n! = \Gamma(n+1)$, then setting,

$$F(x) = \Gamma(x+1)^{1/x} \quad \text{and} \quad A(x) = F(x+1) - F(x),$$

for every $x > 0$, we have $F(n) = \sqrt[n]{n!}$ and

$$a_n = F(n+1) - F(n) = \Gamma(n+2)^{\frac{1}{n+1}} - \Gamma(n+1)^{\frac{1}{n}} = A(n).$$

Hence, the decreasing monotonicity of a_n would follow from the analogous monotonicity of the function A , involving Γ . Moreover, we can also obtain it if we are able to show that

$$F(x+2) - F(x+1) < F(x+1) - F(x) \iff \frac{F(x+2) + F(x)}{2} < F(x+1),$$

for every $x > 0$. The last inequality is clearly implied by the strict concavity of F , hence of the function

$$x \mapsto \Gamma(x+1)^{1/x}.$$

This is exactly the line followed by Sándor, who proved such concavity in [6] ([7, Chapter 5, Section 11]).

We begin by reviewing some basic facts.

If we suppose that the sequence converges, considering the two sequences $\sqrt[n+1]{(n+1)!}$ and n , by means of the Stolz-Cesaro theorem, we have

$$\lim_{n \rightarrow \infty} \sqrt[n+1]{(n+1)!} - \sqrt[n]{n!} = \lim_{n \rightarrow \infty} \frac{\sqrt[n]{n!}}{n} = 1/e,$$

as the last limit is well-known. It actually also follows from the Cesaro-type result (see [4], for instance)

$$\lim_{n \rightarrow \infty} \frac{x_{n+1}}{x_n} = \ell \implies \lim_{n \rightarrow \infty} \sqrt[n+1]{x_n} = \ell,$$

considering $x_n = n!/n^n$.

Alternatively, still assuming that the sequence a_n converges to some limit, we have that the sequence given by its arithmetic means

$$\frac{\sum_{k=1}^n a_k}{n}$$

converges to the same limit. So we conclude

$$\lim_{n \rightarrow \infty} \sqrt[n+1]{(n+1)!} - \sqrt[n]{n!} = \lim_{n \rightarrow \infty} \frac{\sum_{k=1}^n a_k}{n} = \lim_{n \rightarrow \infty} \frac{\sqrt[n+1]{(n+1)!} - 1}{n} = 1/e.$$

Thus, the tricky part is actually showing that the Lalescu sequence converges. This can be shown by means of Stirling's formula [2, 8, 9]: we rewrite the sequence as

$$\sqrt[n+1]{(n+1)!} - \sqrt[n]{n!} = \sqrt[n]{n!} (e^{\log(n+1)/(n+1) - \log n!/n} - 1)$$

and examine the exponent of e :

$$\begin{aligned} \frac{\log(n+1)!}{n+1} - \frac{\log n!}{n} &= \frac{n \log(n+1) - \log n!}{n(n+1)} \\ &= \frac{n \log(n+1) + n \log n - n \log n - n \log \sqrt[n]{n!}}{n(n+1)} \\ &= \frac{n \log(1 + 1/n) + n \log(n/\sqrt[n]{n!})}{n(n+1)} \\ &= \frac{\log(1 + 1/n) + \log(n/\sqrt[n]{n!})}{(n+1)}. \end{aligned}$$

Then, since $n/\sqrt[n]{n!} \rightarrow e$, we have that the exponent is equal to

$$1/(n+1) + o(1/n).$$

If we consider that, by Stirling's formula,

$$\sqrt[n]{n!} \approx n/e,$$

we get

$$\sqrt[n]{n!} (e^{\log(n+1)/(n+1) - \log n!/n} - 1) \approx \frac{n/e}{n+1} + o(1) \rightarrow 1/e.$$

An alternative line, without the use of Stirling's formula, goes as follows: we rewrite the sequence as

$$\sqrt[n+1]{(n+1)!} - \sqrt[n]{n!} = \frac{\sqrt[n]{n!}}{n} \left(\frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n]{n!}} - 1 \right) n,$$

and we observe that

$$\left(\frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n]{n!}} \right)^n = \left(\frac{(n+1)!^n}{n!^{n+1}} \right)^{\frac{1}{n+1}} = \left(\frac{(n+1)^n}{n!} \right)^{\frac{1}{n+1}} = \left(\frac{n+1}{\sqrt[n]{n!}} \right)^{\frac{n}{n+1}} \rightarrow e, \quad (1.1)$$

as it is well known that $n/\sqrt[n]{n!} \rightarrow e$, which implies

$$\left(\frac{n+1}{\sqrt[n]{n!}} \right)^{\frac{n}{n+1}} = \left(\frac{n}{\sqrt[n]{n!}} \right)^{\frac{n}{n+1}} \left(\frac{n+1}{n} \right)^{\frac{n}{n+1}} \rightarrow e.$$

Then,

$$\begin{aligned} \sqrt[n+1]{(n+1)!} - \sqrt[n]{n!} &= \frac{\sqrt[n]{n!}}{n} \cdot \frac{\frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n]{n!}} - 1}{\log \left(1 + \left(\frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n]{n!}} - 1 \right) \right)^n} \cdot \log \left(1 + \left(\frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n]{n!}} - 1 \right) \right)^n \\ &= \frac{\sqrt[n]{n!}}{n} \cdot \frac{\frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n]{n!}} - 1}{\log \left(1 + \left(\frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n]{n!}} - 1 \right) \right)^n} \cdot \log \left(\frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n]{n!}} \right)^n \rightarrow 1/e, \end{aligned}$$

for $n \rightarrow \infty$. Indeed, the first factor tends to $1/e$, while the second and third go to 1, by the limit (1.1) and

$$\frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n]{n!}} \rightarrow 1$$

which again follows by $n/\sqrt[n]{n!} \rightarrow e$.

Another “natural” way to show the convergence of the sequence would be to prove that it is bounded and monotone. The boundedness from below is actually easy: the sequence a_n is positive, for every $n \in \mathbb{N}$. Indeed, when above we expressed the sequence as

$$\sqrt[n+1]{(n+1)!} - \sqrt[n]{n!} = \sqrt[n]{n!} (e^{\log(n+1)/(n+1) - \log n!/n} - 1),$$

we have seen that the exponent of e is given by

$$\frac{\log(n+1)!}{n+1} - \frac{\log n!}{n} = \frac{\log(1+1/n) + \log(n/\sqrt[n]{n!})}{(n+1)},$$

that is positive, since $1+1/n$ and $n/\sqrt[n]{n!}$ are both greater than 1, hence the positivity of a_n . Unfortunately, the monotonicity, that is, the fact that a_n is decreasing (as one could expect), is not present in literature, up to our knowledge, and it turns out to be absolutely non trivial.

Our contribution to the study of the Lalescu sequence is then to show such monotonicity, first eventually (from some $n \in \mathbb{N}$ on, which is clearly sufficient for the convergence) and then fully (for every $n \in \mathbb{N}$).

As we will see in the next section, our analysis requires a more refined version of Stirling's formula than the "standard" one (a "higher order" expansion of $n!$, formula (2.3)) and some quite precise estimates from above and below on $n!$ (formula (2.8)). Moreover, to obtain the full monotonicity, some numerical check is also needed in order to deal with the "small" values of $n \in \mathbb{N}$.

Let us say that we think that what follows can be seen as an interesting (and tough) problem about dealing with orders of infinitesimals by means of Taylor expansions and estimates.

2. Decreasing monotonicity

We set $\ell_n = \sqrt[n]{n!}$. Clearly, for every $n \in \mathbb{N}$, we have $\ell_n > 0$.

To see that the sequence

$$a_n = \sqrt[n+1]{(n+1)!} - \sqrt[n]{n!}$$

is decreasing, we are going to prove equivalently that

$$\frac{\ell_{n+2}}{\ell_{n+1}} + \frac{\ell_n}{\ell_{n+1}} < 2. \quad (2.1)$$

Defining

$$x_n = \log \frac{\ell_{n+1}}{\ell_n},$$

the inequality (2.1) can then be written as

$$\exp(x_{n+1}) + \exp(-x_n) = 2 \exp\left(\frac{x_{n+1} - x_n}{2}\right) \cosh\left(\frac{x_{n+1} + x_n}{2}\right) < 2. \quad (2.2)$$

The ratio $\frac{\ell_{n+1}}{\ell_n}$ is a natural quantity to study, measuring the relative growth between consecutive terms and providing a better understanding of the asymptotic behavior of ℓ_n , passing from one term to the next. Moreover, taking the logarithm makes it easier to finely analyze such passages.

2.1. Eventual monotonicity

We are going to use the following "enhanced" Stirling's formula (see [9]),

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{12n} + \frac{1}{288n^2} + O\left(\frac{1}{n^3}\right)\right)$$

$$= \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{12n} + \frac{1}{288n^2} + o\left(\frac{1}{n^2}\right)\right). \quad (2.3)$$

Then,

$$\log \ell_n = \frac{\log(2\pi n)}{2n} + \log n - 1 + \frac{1}{n} \log \left(1 + \frac{1}{12n} + \frac{1}{288n^2} + o\left(\frac{1}{n^2}\right)\right).$$

Expanding in Taylor series up to $o(1/n^3)$, we obtain

$$\begin{aligned} \log \ell_n &= \log n - 1 + \frac{\log n}{2n} + \frac{\log(2\pi)}{2n} + \frac{1}{12n^2} - \frac{1}{360n^4} + o\left(\frac{1}{n^4}\right) \\ &= \log n - 1 + \frac{\log n}{2n} + \frac{\log(2\pi)}{2n} + \frac{1}{12n^2} + o\left(\frac{1}{n^3}\right). \end{aligned}$$

Hence,

$$\begin{aligned} x_n = \log \frac{\ell_{n+1}}{\ell_n} &= \log(n+1) - 1 + \frac{\log(n+1)}{2(n+1)} + \frac{\log(2\pi)}{2(n+1)} + \frac{1}{12(n+1)^2} + o\left(\frac{1}{n^3}\right) \\ &\quad - \log n + 1 - \frac{\log n}{2n} - \frac{\log(2\pi)}{2n} - \frac{1}{12n^2} + o\left(\frac{1}{n^3}\right) \\ &= \log(1 + 1/n) + \frac{n \log(1 + 1/n) - \log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} - \frac{2n+1}{12n^2(n+1)^2} + o\left(\frac{1}{n^3}\right) \\ &= \log(1 + 1/n) + \frac{\log(1 + 1/n)}{2(n+1)} - \frac{\log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} - \frac{1}{6n^2(n+1)} + o\left(\frac{1}{n^3}\right) \\ &= \frac{1}{n} - \frac{\log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} - \frac{1}{2n^2} + \frac{1}{2n(n+1)} \\ &\quad + \frac{1}{3n^3} - \frac{1}{6n^2(n+1)} - \frac{1}{4n^2(n+1)} + o\left(\frac{1}{n^3}\right) \\ &= \frac{1}{n} - \frac{\log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} - \frac{7}{12n^3} + o\left(\frac{1}{n^3}\right). \end{aligned}$$

So we have

$$\begin{aligned} x_{n+1} - x_n &= \frac{1}{n+1} - \frac{\log(n+1)}{2(n+1)(n+2)} - \frac{\log(2\pi)}{2(n+1)(n+2)} - \frac{7}{12(n+1)^3} \\ &\quad - \frac{1}{n} + \frac{\log n}{2n(n+1)} + \frac{\log(2\pi)}{2n(n+1)} + \frac{7}{12n^3} + o\left(\frac{1}{n^3}\right) \\ &= -\frac{1}{n(n+1)} - \frac{n \log(n+1) - (n+2) \log n}{2n(n+1)(n+2)} + \frac{\log(2\pi)}{n(n+1)(n+2)} + o\left(\frac{1}{n^3}\right) \\ &= -\frac{1}{n(n+1)} - \frac{n \log(1 + 1/n) - 2 \log n}{2n(n+1)(n+2)} + \frac{\log(2\pi)}{n^3} + o\left(\frac{1}{n^3}\right) \\ &= -\frac{1}{n(n+1)} + \frac{\log n}{n^3} - \frac{1}{2n^3} + \frac{\log(2\pi)}{n^3} + o\left(\frac{1}{n^3}\right) \\ &= -\frac{1}{n^2} + \frac{\log n}{n^3} + \frac{1}{n^3} - \frac{1}{2n^3} + \frac{\log(2\pi)}{n^3} + o\left(\frac{1}{n^3}\right) \\ &= -\frac{1}{n^2} + \frac{\log n}{n^3} + \frac{1 + 2 \log(2\pi)}{2n^3} + o\left(\frac{1}{n^3}\right). \end{aligned}$$

For the sum $x_{n+1} + x_n$ we expand in Taylor series up to the term n^{-2} .

$$\begin{aligned}
x_{n+1} + x_n &= \frac{1}{n+1} - \frac{\log(n+1)}{2(n+1)(n+2)} - \frac{\log(2\pi)}{2(n+1)(n+2)} \\
&\quad + \frac{1}{n} - \frac{\log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} + o\left(\frac{1}{n^2}\right) \\
&= \frac{2n+1}{n(n+1)} - \frac{n \log(n+1) + (n+2) \log n}{2n(n+1)(n+2)} - \frac{\log(2\pi)}{n(n+1)} + o\left(\frac{1}{n^2}\right) \\
&= \frac{2n+1}{n(n+1)} - \frac{\log[n(n+1)]}{2n(n+1)} - \frac{\log(2\pi)}{n(n+1)} + o\left(\frac{1}{n^2}\right) \\
&= \frac{2}{n} - \frac{\log[n(n+1)]}{2n(n+1)} - \frac{1 + \log(2\pi)}{n^2} + o\left(\frac{1}{n^2}\right).
\end{aligned}$$

It follows, expanding up to $o(1/n^3)$,

$$\begin{aligned}
(x_{n+1} + x_n)^2 &= \left(\frac{2}{n} - \frac{\log[n(n+1)]}{2n(n+1)} - \frac{1 + \log(2\pi)}{n^2} + o\left(\frac{1}{n^2}\right) \right)^2 \\
&= \frac{4}{n^2} - 2 \frac{\log[n(n+1)]}{n^2(n+1)} - \frac{4(1 + \log(2\pi))}{n^3} + o\left(\frac{1}{n^3}\right) \\
&= \frac{4}{n^2} - 4 \frac{\log n}{n^3} - \frac{4(1 + \log(2\pi))}{n^3} + o\left(\frac{1}{n^3}\right).
\end{aligned}$$

Developing then in Taylor series formula (2.2), we obtain

$$\begin{aligned}
2 \exp\left(\frac{x_{n+1} - x_n}{2}\right) \cosh\left(\frac{x_{n+1} + x_n}{2}\right) \\
&= 2 \left(1 + \frac{x_{n+1} - x_n}{2} + \dots \right) \left(1 + \frac{1}{2} \left(\frac{x_{n+1} + x_n}{2} \right)^2 + \dots \right) \\
&= 2 \left(1 - \frac{1}{2n^2} + \frac{\log n}{2n^3} + \frac{1 + 2 \log(2\pi)}{4n^3} + o\left(\frac{1}{n^3}\right) \right) \\
&\quad \cdot \left(1 + \frac{1}{8} \left(\frac{4}{n^2} - 4 \frac{\log n}{n^3} - \frac{4(1 + \log(2\pi))}{n^3} + o\left(\frac{1}{n^3}\right) \right) \right) \\
&= 2 \left(1 - \frac{1}{2n^2} + \frac{\log n}{2n^3} + \frac{1 + 2 \log(2\pi)}{4n^3} + o\left(\frac{1}{n^3}\right) \right) \\
&\quad \cdot \left(1 + \frac{1}{2n^2} - \frac{\log n}{2n^3} - \frac{1 + \log(2\pi)}{2n^3} + o\left(\frac{1}{n^3}\right) \right) \\
&= 2 - \frac{1}{2n^3} + o\left(\frac{1}{n^3}\right),
\end{aligned}$$

which is clearly smaller than 2, for large $n \in \mathbb{N}$.

Therefore, the Lalescu sequence is eventually decreasing, by formula (2.2).

2.2. Full monotonicity

We will use the following “standard” inequalities.

$$x - x^2/2 \leq \log(1 + x) \leq x, \quad (2.4)$$

$$x - x^2/2 + x^3/3 - x^4/4 \leq \log(1+x) \leq x - x^2/2 + x^3/3, \quad (2.5)$$

$$1 - x \leq \frac{1}{1+x} \leq 1 - x + x^2, \quad (2.6)$$

which are valid for $x > 0$.

Furthermore,

$$e^x \leq \frac{1}{1-x} \quad \text{and} \quad \cosh x \leq \frac{1}{1-x^2/2}, \quad (2.7)$$

for $x \in (-1, 1)$. The second inequality above can be shown by comparing the Taylor series, which converge uniformly in the interval $[-1, 1]$,

$$\cosh x = \sum_{i=0}^{\infty} \frac{x^{2i}}{(2i)!} \quad \text{and} \quad \frac{1}{1-x^2/2} = \sum_{i=0}^{\infty} \frac{x^{2i}}{2^i},$$

noticing that $2^n \leq (2n)!$, for every $n \in \mathbb{N}$.

From the following estimates due to Robbins [3],

$$\sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n+1}} \leq n! \leq \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n}}, \quad (2.8)$$

holding for every $n \in \mathbb{N}$, it follows that

$$\frac{\log(2\pi n)}{2n} + \log n - 1 + \frac{1}{(12n+1)n} \leq \log \ell_n \leq \frac{\log(2\pi n)}{2n} + \log n - 1 + \frac{1}{12n^2}.$$

Thus,

$$\begin{aligned} x_n &= \log \frac{\ell_{n+1}}{\ell_n} \leq \log(n+1) - 1 + \frac{\log(n+1)}{2(n+1)} + \frac{\log(2\pi)}{2(n+1)} + \frac{1}{12(n+1)^2} \\ &\quad - \log n + 1 - \frac{\log n}{2n} - \frac{\log(2\pi)}{2n} - \frac{1}{(12n+1)n} \\ &= \log(1+1/n) + \frac{n \log(1+1/n) - \log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} - \frac{23n+12}{12(12n+1)(n+1)^2n} \\ &= \log(1+1/n) + \frac{\log(1+1/n)}{2(n+1)} - \frac{\log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} - \frac{23n+12}{12(12n+1)(n+1)^2n}. \end{aligned}$$

Then, applying the inequality on the right side of formula (2.5) to $\log(1+1/n)$, we have

$$\begin{aligned} x_n &\leq \frac{1}{n} - \frac{\log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} - \frac{23n+12}{12(12n+1)(n+1)^2n} - \frac{1}{2n^2} + \frac{1}{2n(n+1)} \\ &\quad + \frac{1}{3n^3} - \frac{1}{4n^2(n+1)} + \frac{1}{6n^3(n+1)} \\ &= \frac{1}{n} - \frac{\log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} - \frac{23n+12}{12(12n+1)(n+1)^2n} - \frac{1}{2n^2(n+1)} \\ &\quad + \frac{1}{12n^3} + \frac{5}{12n^3(n+1)} \\ &= \frac{1}{n} - \frac{\log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} - \frac{23n+12}{12(12n+1)(n+1)^2n} - \frac{5}{12n^3} + \frac{11}{12n^3(n+1)} \end{aligned}$$

$$\leq \frac{1}{n} - \frac{\log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} - \frac{23n+12}{12(12n+1)(n+1)^2n} - \frac{5}{12n^3} + \frac{11}{12n^4},$$

where in the last step, we estimated $\frac{1}{12n^3(n+1)} \leq \frac{1}{12n^4}$.

By the inequality on the left side of formula (2.6), we have

$$\begin{aligned} \frac{23}{12(12n+1)(n+1)^2} &= \frac{23}{144n^3\left(1 + \frac{25}{12n} + \frac{7}{6n^2} + \frac{1}{12n^3}\right)} \\ &\geq \frac{23}{144n^3}\left(1 - \frac{25}{12n} - \frac{7}{6n^2} - \frac{1}{12n^3}\right) \\ &\geq \frac{23}{144n^3} - \frac{1}{2n^4}, \end{aligned}$$

for every $n \geq 2$, therefore

$$\begin{aligned} x_n &\leq \frac{1}{n} - \frac{\log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} - \frac{23}{144n^3} + \frac{1}{2n^4} - \frac{5}{12n^3} + \frac{11}{12n^4} \\ &\leq \frac{1}{n} - \frac{\log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} - \frac{83}{144n^3} + \frac{3}{2n^4}. \end{aligned} \quad (2.9)$$

Furthermore, it is easily seen that, when $n \geq 3$, this inequality implies the “simpler” inequality

$$x_n \leq \frac{1}{n} - \frac{\log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)}, \quad (2.10)$$

which will be useful later.

Similarly, using the left inequalities in formulas (2.4) and (2.5) on $\log(1 + 1/n)$, we have

$$\begin{aligned} x_n &= \log \frac{\ell_{n+1}}{\ell_n} \geq \log(1 + 1/n) + \frac{n \log(1 + 1/n) - \log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} - \frac{25n+13}{12(12n+13)(n+1)n^2} \\ &\geq \frac{1}{n} - \frac{\log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} - \frac{1}{2n^2} + \frac{1}{2n(n+1)} - \frac{25n+13}{12(12n+13)(n+1)n^2} - \frac{1}{4n^2(n+1)} \\ &\quad + \frac{1}{3n^3} - \frac{1}{4n^4} \\ &= \frac{1}{n} - \frac{\log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} - \frac{25n+13}{12(12n+13)(n+1)n^2} - \frac{3}{4n^2(n+1)} + \frac{1}{3n^3} - \frac{1}{4n^4} \\ &\geq \frac{1}{n} - \frac{\log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} - \frac{25n+13}{12(12n+13)(n+1)n^2} - \frac{3}{4n^3} + \frac{1}{3n^3} - \frac{1}{4n^4} \\ &= \frac{1}{n} - \frac{\log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} - \frac{25n+13}{12(12n+13)(n+1)n^2} - \frac{5}{12n^3} - \frac{1}{4n^4} \end{aligned}$$

where, in the penultimate step, we estimated $\frac{3}{4n^2(n+1)} \leq \frac{3}{4n^3}$.

Since clearly

$$\frac{25n+13}{12(12n+13)(n+1)n^2} \leq \frac{25}{144n^3} + \frac{13}{144n^4},$$

we have

$$x_n \geq \frac{1}{n} - \frac{\log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} - \frac{25}{144n^3} - \frac{13}{144n^4} - \frac{5}{12n^3} - \frac{1}{4n^4}$$

$$= \frac{1}{n} - \frac{\log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} - \frac{85}{144n^3} - \frac{49}{144n^4}, \quad (2.11)$$

which implies the “simpler” inequality

$$x_n \geq \frac{1}{n} - \frac{\log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} - \frac{1}{n^3}, \quad (2.12)$$

for each $n \geq 1$, which we will use later.

Let us then estimate the difference $x_{n+1} - x_n$ from above with the inequalities (2.9) and (2.11):

$$\begin{aligned} x_{n+1} - x_n &\leq \frac{1}{n+1} - \frac{\log(n+1)}{2(n+1)(n+2)} - \frac{\log(2\pi)}{2(n+1)(n+2)} - \frac{83}{144(n+1)^3} + \frac{3}{2(n+1)^4} \\ &\quad - \frac{1}{n} + \frac{\log n}{2n(n+1)} + \frac{\log(2\pi)}{2n(n+1)} + \frac{85}{144n^3} + \frac{49}{144n^4} \\ &\leq -\frac{1}{n(n+1)} - \frac{n \log(n+1) - (n+2) \log n}{2n(n+1)(n+2)} + \frac{\log(2\pi)}{n(n+1)(n+2)} \\ &\quad + \frac{85(1+3n+3n^2) + 2n^3}{144n^3(n+1)^3} + \frac{49}{144n^4} + \frac{3}{2n^4} \\ &\leq -\frac{1}{n^2} - \frac{n \log(1+1/n) - 2 \log n}{2n(n+1)(n+2)} + \frac{\log(2\pi)}{n^3} + \frac{1}{n^3} \\ &\quad + \frac{85(1+3n+3n^2)}{144n^3(n+1)^3} + \frac{2}{144n^3} + \frac{265}{144n^4}, \end{aligned}$$

where in the last step we used $-\frac{1}{n(n+1)} = -\frac{1}{n^2} + \frac{1}{n^2(n+1)} \leq -\frac{1}{n^2} + \frac{1}{n^3}$.

Since $1+3n+3n^2 \leq 4n^2$, for $n \geq 4$, we have

$$\begin{aligned} x_{n+1} - x_n &\leq -\frac{1}{n^2} - \frac{\log(1+1/n)}{2(n+1)(n+2)} + \frac{\log n}{n(n+1)(n+2)} + \frac{\log(2\pi)}{n^3} \\ &\quad + \frac{340}{144n(n+1)^3} + \frac{146}{144n^3} + \frac{265}{144n^4} \\ &\leq -\frac{1}{n^2} - \frac{\log(1+1/n)}{2(n+1)(n+2)} + \frac{\log n}{n^3} + \frac{\log(2\pi)}{n^3} \\ &\quad + \frac{340}{144n^4} + \frac{146}{144n^3} + \frac{265}{144n^4} \\ &= -\frac{1}{n^2} - \frac{\log(1+1/n)}{2(n+1)(n+2)} + \frac{\log n}{n^3} + \frac{\log(2\pi)}{n^3} + \frac{146}{144n^3} + \frac{605}{144n^4} \end{aligned}$$

and applying the left inequality in formula (2.4) to $\log(1+1/n)$, we conclude

$$\begin{aligned} x_{n+1} - x_n &\leq -\frac{1}{n^2} - \frac{1}{2n(n+1)(n+2)} + \frac{1}{4n^2(n+1)(n+2)} + \frac{\log n}{n^3} + \frac{\log(2\pi)}{n^3} + \frac{146}{144n^3} + \frac{605}{144n^4} \\ &\leq -\frac{1}{n^2} - \frac{1}{2n^3} + \frac{3}{2n^4} + \frac{1}{4n^4} + \frac{\log n}{n^3} + \frac{\log(2\pi)}{n^3} + \frac{146}{144n^3} + \frac{605}{144n^4} \\ &\leq -\frac{1}{n^2} + \frac{\log n}{n^3} + \frac{74/144 + \log(2\pi)}{n^3} + \frac{6}{n^4}, \end{aligned}$$

for $n \geq 4$, where we used $-\frac{1}{2n(n+1)(n+2)} = -\frac{1}{2n^3} + \frac{3n+2}{2n^3(n+1)(n+2)} \leq -\frac{1}{2n^3} + \frac{3}{2n^4}$.

On the other hand, using the inequalities (2.10) and (2.12) to estimate $x_{n+1} - x_n$ from below, we have

$$\begin{aligned}
x_{n+1} - x_n &\geq \frac{1}{n+1} - \frac{\log(n+1)}{2(n+1)(n+2)} - \frac{\log(2\pi)}{2(n+1)(n+2)} - \frac{1}{(n+1)^3} \\
&\quad - \frac{1}{n} + \frac{\log n}{2n(n+1)} + \frac{\log(2\pi)}{2n(n+1)} \\
&= -\frac{1}{n(n+1)} - \frac{n\log(n+1) - (n+2)\log n}{2n(n+1)(n+2)} - \frac{1}{(n+1)^3} + \frac{\log(2\pi)}{n(n+1)(n+2)} \\
&= -\frac{1}{n^2} + \frac{1}{n^2(n+1)} - \frac{\log(1+1/n)}{2(n+1)(n+2)} + \frac{\log n}{n(n+1)(n+2)} - \frac{1}{(n+1)^3} + \frac{\log(2\pi)}{n(n+1)(n+2)} \\
&\geq -\frac{1}{n^2} - \frac{1}{2n(n+1)(n+2)} + \frac{\log n}{n(n+1)(n+2)} + \frac{\log(2\pi)}{n(n+1)(n+2)} \\
&\geq -\frac{1}{n^2},
\end{aligned}$$

for every $n \in \mathbb{N}$.

Therefore, for $n \geq 4$, we conclude

$$-\frac{1}{n^2} \leq x_{n+1} - x_n \leq -\frac{1}{n^2} + \frac{\log n}{n^3} + \frac{74/144 + \log(2\pi)}{n^3} + \frac{6}{n^4}. \quad (2.13)$$

Furthermore, noticing that the term on the right is certainly negative for $n \geq 4$, we have in such a case

$$(x_{n+1} - x_n)^2 \leq \frac{1}{n^4}.$$

Let us now estimate the sum $x_{n+1} + x_n$ using the inequality (2.10):

$$\begin{aligned}
x_{n+1} + x_n &\leq \frac{1}{n+1} - \frac{\log(n+1)}{2(n+1)(n+2)} - \frac{\log(2\pi)}{2(n+1)(n+2)} + \frac{1}{n} - \frac{\log n}{2n(n+1)} - \frac{\log(2\pi)}{2n(n+1)} \\
&= \frac{2n+1}{n(n+1)} - \frac{n\log(n+1) + (n+2)\log n}{2n(n+1)(n+2)} - \frac{\log(2\pi)}{n(n+2)} \\
&= \frac{2n+1}{n(n+1)} - \frac{\log[n(n+1)]}{2n(n+1)} - \frac{\log(2\pi)}{n(n+2)} + \frac{\log(n+1)}{n(n+1)(n+2)}
\end{aligned}$$

and applying inequalities

$$\begin{aligned}
\frac{2n+1}{n(n+1)} &= \left(\frac{2}{n} + \frac{1}{n^2}\right)\left(\frac{1}{1+1/n}\right) \leq \frac{2}{n} - \frac{1}{n^2} + \frac{1}{n^3} + \frac{1}{n^4} \leq \frac{2}{n} - \frac{1}{n^2} + \frac{2}{n^3} \\
\frac{\log[n(n+1)]}{2n(n+1)} &\geq \frac{\log n}{n(n+1)} \geq \frac{\log n}{n^2} - \frac{\log n}{n^3} \\
\frac{1}{n(n+1)} &\geq \frac{1}{n^2} - \frac{1}{n^3} \\
\frac{1}{n(n+2)} &\geq \frac{1}{n^2} - \frac{2}{n^3}
\end{aligned}$$

(where in the first one we used the inequality on the right side of formula (2.6)), we obtain

$$x_{n+1} + x_n \leq \frac{2}{n} - \frac{\log n}{n^2} - \frac{1 + \log(2\pi)}{n^2} + \frac{\log n}{n^3} + \frac{2 + 2 \log(2\pi)}{n^3} + \frac{\log(n+1)}{n^3}.$$

Then, considering the inequality

$$\log n + 2 + 2 \log(2\pi) + \log(n+1) \leq \frac{n}{16},$$

from which it obviously follows

$$\frac{\log n}{n^3} + \frac{2 + 2 \log(2\pi)}{n^3} + \frac{\log(n+1)}{n^3} \leq \frac{1}{16n^2},$$

and which holds for $n \geq 271$ (keeping in mind the concavity of the left-hand side and checking numerically), we conclude

$$0 \leq x_{n+1} + x_n \leq \frac{2}{n} - \frac{\log n}{n^2} - \frac{15/16 + \log(2\pi)}{n^2} \leq \frac{2}{n}, \quad (2.14)$$

for every $n \geq 271$.

For $n \geq 271$, both $y = (\frac{x_{n+1}-x_n}{2})$ and $z = (\frac{x_{n+1}+x_n}{2})$ are smaller than 1 in absolute value, so we can use the inequalities in formula (2.7) and evaluate

$$\exp\left(\frac{x_{n+1}-x_n}{2}\right) = e^y \leq \frac{1}{1-y} = 1 + y + \frac{y^2}{1-y} \leq 1 + y + y^2,$$

since $y \leq 0$ and

$$\cosh\left(\frac{x_{n+1}+x_n}{2}\right) = \cosh z \leq \frac{1}{1-z^2/2} = 1 + \frac{z^2}{2} + \frac{z^4}{4(1-z^2/2)} \leq 1 + \frac{z^2}{2} + \frac{z^4}{2},$$

since $z^2 \leq 1$. Therefore, for the inequalities (2.13)–(2.14), we obtain

$$\begin{aligned} 2 \exp\left(\frac{x_{n+1}-x_n}{2}\right) \cosh\left(\frac{x_{n+1}+x_n}{2}\right) &\leq (1 + y + y^2) \left(1 + \frac{z^2}{2} + \frac{z^4}{2}\right) \\ &= 2 \left(1 + \frac{x_{n+1}-x_n}{2} + \left(\frac{x_{n+1}-x_n}{2}\right)^2\right) \left(1 + \frac{1}{2} \left(\frac{x_{n+1}+x_n}{2}\right)^2 + \frac{1}{2} \left(\frac{x_{n+1}+x_n}{2}\right)^4\right) \\ &\leq 2 \left(1 - \frac{1}{2n^2} + \frac{\log n}{2n^3} + \frac{74/144 + \log(2\pi)}{2n^3} + \frac{3}{n^4} + \frac{1}{4n^4}\right) \\ &\quad \cdot \left(1 + \frac{1}{2} \left(\frac{1}{n} - \frac{\log n}{2n^2} - \frac{15/16 + \log(2\pi)}{2n^2}\right)^2 + \frac{1}{2n^4}\right) \\ &= 2 \left(1 - \frac{1}{2n^2} + \frac{\log n}{2n^3} + \frac{74/144 + \log(2\pi)}{2n^3} + \frac{13}{4n^4}\right) \\ &\quad \cdot \left(1 + \frac{1}{2n^2} - \frac{15/16 + \log(2\pi) + \log n}{2n^3} + \frac{(16 \log n + 15 + 16 \log(2\pi))^2}{2048n^4} + \frac{1}{2n^4}\right) \\ &= 2 \left(1 - \frac{1}{2n^2} + \frac{\log n}{2n^3} + \frac{74/144 + \log(2\pi)}{2n^3} + \frac{13}{4n^4}\right) \end{aligned}$$

$$\cdot \left(1 + \frac{1}{2n^2} - \frac{15/16 + \log(2\pi) + \log n}{2n^3} + \frac{(16 \log n + 15 + 16 \log(2\pi))^2 + 1024}{2048n^4} \right).$$

It is easy to show that

$$\frac{(16 \log n + 15 + 16 \log(2\pi))^2 + 1024}{2048n^4} \leq \frac{1}{32n^3},$$

for $n \geq 304$, hence

$$\begin{aligned} & 2 \exp\left(\frac{x_{n+1} - x_n}{2}\right) \cosh\left(\frac{x_{n+1} + x_n}{2}\right) \\ & \leq 2 \left(1 - \frac{1}{2n^2} + \frac{\log n}{2n^3} + \frac{74/144 + \log(2\pi)}{2n^3} + \frac{13}{4n^4} \right) \left(1 + \frac{1}{2n^2} - \frac{14/16 + \log(2\pi) + \log n}{2n^3} \right) \\ & \leq 2 \left(1 - \frac{1}{2n^2} + \frac{\log n}{2n^3} + \frac{76/144 + \log(2\pi)}{2n^3} \right) \left(1 + \frac{1}{2n^2} - \frac{\log n}{2n^3} - \frac{14/16 + \log(2\pi)}{2n^3} \right), \end{aligned}$$

for $n \geq 468$, since then $\frac{13}{4n^4} \leq \frac{1}{144n^3}$. We therefore finally conclude that for $n \geq 396$, we have (after a straightforward computation)

$$\begin{aligned} 2 \exp\left(\frac{x_{n+1} - x_n}{2}\right) \cosh\left(\frac{x_{n+1} + x_n}{2}\right) & \leq 2 \left(1 - \frac{25}{144n^3} - \frac{1}{4n^4} + \frac{\log(n)/2 + 101/288 + \log(2\pi)/2}{n^5} \right) \\ & \quad - 2 \frac{\log n + 76/144 + \log(2\pi)}{2n^3} \cdot \frac{\log n + 14/16 + \log(2\pi)}{2n^3} \\ & < 2 \left(1 - \frac{25}{144n^3} - \frac{1}{4n^4} + \frac{\log(n)/2 + 101/288 + \log(2\pi)/2}{n^5} \right) \\ & < 2, \end{aligned}$$

since, by a numerical check, there holds

$$-\frac{25}{144} - \frac{1}{4n} + \frac{\log(n)/2 + 101/288 + \log(2\pi)/2}{n^2} < 0$$

for each $n \geq 3$.

Since all the previous estimates are valid for $n \geq 468$, for such $n \in \mathbb{N}$, the sequence is decreasing. By numerically checking the decreasing for $n = 1, \dots, 468$, we then obtain that the Lalescu sequence is always decreasing, remembering formula (2.2).

To numerically check the decreasing for $n = 1, \dots, 468$, we used the following code for the Julia-Version 1.10.4 programming language, with the IntervalArithmetic.jl package [5]:

```
using IntervalArithmetic
```

```
function rootfactorial(n)
I = @interval(1)
exp = @interval(1) / @interval(n)
for j = 1:n
I = I * @interval(j)^exp
end
return I
```

```

end

function lalescu(n)
return rootfactorial(n+1) - rootfactorial(n)
end

setdisplay(:full)
for k = 1:500
println("a_$(k) = $(lalescu(k))")
if !(precedes(lalescu(k), lalescu(k-1)))
@error("lalescu($k) is not guaranteed to be smaller
than lalescu($(k-1))")
end
end

```

Author contributions

The contributions of the authors to all the parts of this paper are equal. All authors have read and approved the final version of the manuscript for publication.

Use of Generative-AI tools declaration

The authors declare that they have not used artificial intelligence (AI) tools in the creation of this article.

Acknowledgments

We are very grateful to Federico Poloni of the Department of Computer Science of University of Pisa for helping us with the numerical analysis part.

Data availability statement

Data sharing is not applicable to the article as no data sets were generated or analyzed during the current study.

Conflict of interest

The authors declare they have no conflict of interest.

References

1. T. Lalescu, Problem 579, *Gaz. Mat. (Bucharest)*, **6** (1900), 148.
2. J. M. Patin, A very short proof of Stirling's formula, *Amer. Math. Monthly*, **96** (1989), 41–42.
<https://doi.org/10.1080/00029890.1989.11972144>

3. H. Robbins, A remark on Stirling's formula, *Amer. Math. Monthly*, **62** (1955), 26–29.
<https://doi.org/10.2307/2308012>
4. W. Rudin, *Principles of mathematical analysis*, McGraw-Hill Science, 1976.
5. D. P. Sanders, L. Benet, Interval Arithmetic.jl, 2014. Available from:
<https://github.com/JuliaIntervals/IntervalArithmetic.jl>.
6. J. Sándor, Sur la fonction Gamma, *Publ. C. Rech. Math. Pures Univ. Neuchâtel, Sér. I*, **21** (1989), 4–7.
7. J. Sándor, *Selected chapters of geometry, analysis and number theory. Classical topics in new perspectives*, Lambert Academic Publishing, 2008.
8. E. T. Whittaker, G. N. Watson, *A course of modern analysis*, Cambridge University Press, 2021.
<https://doi.org/10.1017/9781009004091>
9. Wikipedia, *Stirling's approximation*. Available from:
http://en.wikipedia.org/wiki/Stirling's_approximation.
10. Wikipedia, *Traian Lalescu*. Available from:
https://en.wikipedia.org/wiki/Traian_Lalescu.

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>)