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1. The Lalescu sequence

The following sequence
an = "+ 1) = Vn!

is called the Lalescu sequence, after the Romanian mathematician Traian Lalescu (1882-1929,
see [10]), who proposed it in [1], asking about its convergence. Possibly due to its indubitable
elegance, on one hand, and its not—so—straightforward analysis, on the other, it attracted various
authors, who discussed its properties and generalizations (we underline the evident connection with
Stirling’s formula and Euler’s Gamma function).

The property of decreasing monotonicity was shown by J6zsef Sandor by a careful analysis of the
properties of some functions related to the Gamma function in [6] (see [7, Chapter 5, Section 11] for an
English translation), while our proof is a quite complex example of asymptotic analysis and of how one
can deal very accurately with the orders of infinitesimals of sequences. Moreover, this line of analysis
can actually be applied to a broader class of related sequences.

Before starting, let us make clear the connection between the Euler’s Gamma function I" and the
Lalescu sequence (in particular, its monotonicity). It is well known that n! = I'(n + 1), then setting,

Fx)=T(x+ D"  and  A@x) =F(x+ 1) - F(x),
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for every x > 0, we have F(n) = Vn! and
a, = F(n+1)= F(n) =T(n+2)# —T(n+ 1) = A(n).
Hence, the decreasing monotonicity of a, would follow from the analogous monotonicity of the
function A, involving I'. Moreover, we can also obtain it if we are able to show that
F(x+2)+ F(x)

Fx+2)-F(x+1)<Fx+1)-F(x) = > <F(x+1),

for every x > 0. The last inequality is clearly implied by the strict concavity of F', hence of the function

x> Dx+ DHYF.

This is exactly the line followed by Sandor, who proved such concavity in [6] ( [7, Chapter 5,
Section 11]).

We begin by reviewing some basic facts.
If we suppose that the sequence converges, considering the two sequences Vn! and n, by means of
the Stolz-Cesaro theorem, we have

» Vn!
lim Yo+ D! = V! = lim —= = 1/e,
n—oo n—oo N
as the last limit is well-known. It actually also follows from the Cesaro-type result (see [4], for instance)

Xn+1

im~L =¢ = lim<x, =0,

n—eo X, n—oo

considering x, = n!/n".
Alternatively, still assuming that the sequence a, converges to some limit, we have that the sequence
given by its arithmetic means
ZZ:I A
n
converges to the same limit. So we conclude

1 n n_ "5\ + 1 ‘ - 1
lim "V D = ol = fim 2= % _ YO D=L
n—oo n—o0 n

n n—oo

Thus, the tricky part is actually showing that the Lalescu sequence converges. This can be shown by
means of Stirling’s formula [2, 8, 9]: we rewrite the sequence as

nm _ \"/n_, — \”/’/ﬁ(elog(n+1)!/(n+l)—logn!/n _ 1)

and examine the exponent of e:

logn+1)! logn! nlog(n+1)—Ilogn!

n+1 n nn+1)
nlog(n + 1) + nlogn — nlogn — nlog Vn!
- nn+1)
nlog(l + 1/n) + nlog(n/Vn!)
- n(n+ 1)
_log(1 + 1/n) + log(n/Vn!)

(n+1)
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Then, since n/ Vn! — e, we have that the exponent is equal to

1/(n+ 1)+ o(1/n).
If we consider that, by Stirling’s formula,

Wzn/e,

we get

n nje
”I’l! (elog(n+1)!/(’l+])—10gn!/n _ 1) ~ % + 0(1) N 1/6
n

An alternative line, without the use of Stirling’s formula, goes as follows: we rewrite the sequence as

. Vn! [ "V !

ot Dl = At = ( (n+1) —1) ,
n Vn!

and we observe that

(n+ DI\WT ((n+ D)'\eT o+
nlntl ) _( n! ) _( ¢ ) -
as it is well known that n/ Vn! — e, which implies

n!
(n+1)n11 ( n )H(n+1)+1
=— Se.
Vln! n

n! n
Then,

n

n!

(Y

(1.1)

’H‘I/W
n v ! Yn! _1 " +1 ' n
o DT - VT = ”' -log(l +(—V(") - 1))
n log(l + ( H‘,g'::l)' — 1)) n!
. ’H‘I/W l
n! ",; -1 "V + 1)!

~ -log( - ) — 1/e,
" log(l+(—n+{lp—l)) \a

for n — oo. Indeed, the first factor tends to 1/e, while the second and third go to 1, by the limit (1.1)
and

which again follows by n/Vn! — e.

Another “natural” way to show the convergence of the sequence would be to prove that it is bounded

and monotone. The boundedness from below is actually easy: the sequence a, is positive, for every
n € N. Indeed, when above we expressed the sequence as

nm_ W — W(elog(n+1)!/(n+1)—logn!/n

_ 1) ,
AIMS Mathematics
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we have seen that the exponent of e is given by

log(n+ 1)!' logn! _log(1+ 1/n) +log(n/n!)
n+1 no n+1) ’

that is positive, since 1 + 1/n and n/Vn! are both greater than 1, hence the positivity of a,.
Unfortunately, the monotonicity, that is, the fact that a, is decreasing (as one could expect), is not
present in literature, up to our knowledge, and it turns out to be absolutely non trivial.

Our contribution to the study of the Lalescu sequence is then to show such monotonicity, first
eventually (from some n € N on, which is clearly sufficient for the convergence) and then fully (for
every n € N).

As we will see in the next section, our analysis requires a more refined version of Stirling’s formula
than the “standard” one (a “higher order” expansion of n!, formula (2.3)) and some quite precise
estimates from above and below on n! (formula (2.8)). Moreover, to obtain the full monotonicity, some
numerical check is also needed in order to deal with the “small” values of n € N.

Let us say that we think that what follows can be seen as an interesting (and tough) problem about
dealing with orders of infinitesimals by means of Taylor expansions and estimates.

2. Decreasing monotonicity
We set ¢, = Yn!. Clearly, for every n € N, we have ¢, > 0.

To see that the sequence
ap = "+ D! - Vn!

is decreasing, we are going to prove equivalently that

£n+2 fn
+ <2. 2.1
€n+1 €n+1
Defining
X =1 £n+1
n fn ’
the inequality (2.1) can then be written as
n+l = An nel T Xy
exp(x,+1) + exp(—x,) = 2exp (%) cosh (%) <2. (2.2)

The ratio [’”‘ is a natural quantity to study, measuring the relative growth between consecutive terms
and prov1d1ng a better understanding of the asymptotic behavior of ¢,, passing from one term to the
next. Moreover, taking the logarithm makes it easier to finely analyze such passages.

2.1. Eventual monotonicity

We are going to use the following “enhanced” Stirling’s formula (see [9]),

n 1 1 1
n! = V2nn (g) (l + Ton + 788 + O(E))
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Then,
1

og?l,

1 1 1
= MG) (1 T Ton T 2882 T O(E))

_ log(2nn)

1 1 1 1
+logn—1+ ﬁlog(l +E + 2882 +0(E))'

Expanding in Taylor series up to o(1/n?), we obtain

3 logn log(2m) 1 1 1
log¢, =logn—1+ o + o + 22 3600 + O(Q)
B logn log(2n) 1 1
=logn—1+ o + o + 27 + O(E)'
Hence,
Cpin logn+1) log(2n) 1 1
n =1 =1 +D)-1+ + + +ol—
tn = log == = log(n + 1) 20+ 1) 20+ D) 120+ 12 ()
logn log(2m) 1 1
-1 1— _ _ _
ogn+ 2n 2n 12n2 - 0(n3)
nlog(l +1/n)—logn  log(2n) 2n+1
= log(1 + 1/n) + - - +
og(l +1/n) 2n(n+ 1) 2nn+ 1) 2e2nr 12 C
log(1 + 1/n) logn log(2r) 1
= log(1 + 1/n) + - - - +
g+ = T It D) mtnr D) er )
1 logn log(2m) 1 N 1
n 2n(n+1) 2n(n+1) 202 2n(n+1)
N 1 1 1 N ( 1 )
— — — 0 —_—
3n 6ni(n+1) 4n*(n+1) n3
1 logn log(2rm) 7 1
1 _ - T oy,
n 2nn+1) 2n(n+1) 12r3 n3
So we have
1 log(n + 1) log(2m) 7
Xn+l — Xp =

AIMS Mathematics

"Thn+l 2+ Dm+2) 2+ Dm+2) 12+ 1)
1 logn N log(2r) 7 (1)

+ + +o(—
n 2nn+ ) 2+ D) 1200 O\
1 nlogn+1)—(n+2)logn N log(2r) N ( 1 )
= — —_ ol —
nn+1) 2n(n+ 1)(n +2) nn+1)n+2) n3
1 nlog(l + 1/n)—2logn log(2nr) 1
_ _ R ro( )
nn+1) 2n(n+ 1)(n +2) n3 n3
1 logn 1 log(2r) 1
nn+1) n3 2n3 n3 0(113)
1 logn 1 1 log(2m) 1
= wt e et e o)
1 logn 1+ 2log(2n) 1
RS " 2n3 * O(E).

1
(%)
1
P

(2.3)
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For the sum x,,,; + x, we expand in Taylor series up to the term n=2.

1 B log(n + 1) B log(2r)
n+l1 2m+1D)(n+2) 2n+1Dn+2)

1 logn log(2r) 1
T n T mm+ D) 2am+ D) o(3)
2n + 1 _nlog(n+1)+(n+2)logn_ log(2m) N (1)

Xp+1 T X =

B nn+1) 2n(n+ 1)(n+2) nn+1) n?
2n+1 log[n(n+1)] log(2n) N ( 1 )
= —_ p— 0 —_—
nn+1) 2n(n+1) nn+1) n?
2 log[n(n+1)] 1+ log(2m) 1
Llosn ()
n 2n(n+1) n? n?
It follows, expanding up to o(1/n?),
2 log[n(n+1)] 1+log(2n) 1,\
n+1 T Xp 2= (_ - - +o\— )
(1 + %) n 2n(n+1) n? O(nZ)
_ 4 2log[n(n + D] 4 + log(2n)) N 0(l)
n? n*(n+1) n3 n3
4 logn  4(1 + log(2m)) 1
—E—4 Py - 3 +0($).
Developing then in Taylor series formula (2.2), we obtain
zexp(@) Cosh(xn%w)
:2(1 +M+...)(l +1(M)2+...)
2 2 2
B 1 logn 1+ 2log(2n) 1
1ot ot e o))
1,4 logn 4(1 +log(2n)) 1
(gl -4 - rel)
B 1 logn 1+ 2log(2n) 1
=21t e g+ ol3)
| logn 1+ log(2n) 1
(1452~ +el)
1 1
=2- 75+ o).

which is clearly smaller than 2, for large n € N.

Therefore, the Lalescu sequence is eventually decreasing, by formula (2.2).

2.2. Full monotonicity

We will use the following “standard” inequalities.

x—x*/2 < log(1 + x) < x,

(2.4)
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x—x*/2+x°/3-x*/4 <log(l +x) < x — x*/2 + x°/3, (2.5)
1

l—x< <1-x+x, (2.6)

1

+

X
which are valid for x > 0.
Furthermore,

1 1
e"<1_x and coshx<1_x2/2,

for x € (=1,1). The second inequality above can be shown by comparing the Taylor series, which
converge uniformly in the interval [—1, 1],

2.7)

x2n

i 1 i xZn
hy= d — -1
cosy Zol el T 1o ; 2

noticing that 2" < (2n)!, for every n € N.
From the following estimates due to Robbins [3],

2rn (E) e T <n!< V2an (E) e , (2.8)
e e
holding for every n € N, it follows that
log(2nn) 1 log(2nn)
——+1 -1+ ——<logl, < ——=+1 -1 .
T T Ay e S %8 T T o
Thus,
Cos1 log(n+ 1) log(2m) 1
w =1 <1 +1)-1+ + +
% = log == < log(n +1) 2n+1) 2+ 1) 12+ 1y
logn log(2n) 1
-1 +1- - -
osn 20 2n (12n+ Dn
log(1+1/n) -1 log(2 23n+ 12
:log(1+1/n)+n0g( /n) —logn  log(2m) n
2n(n+1) 2n(n+1) 12(12n+ D(n+ 1)*n
log(1 + 1/n) logn log(2rm) 23n+ 12

= loe A I = ) "I+ D 2an+ D 12020+ Do+ D

Then, applying the inequality on the right side of formula (2.5) to log(1 + 1/n), we have

_1__logn  log(m 230 + 12 L,
X, <—— - - -——t—
n 2nn+1) 2n(n+1) 12(02n+ D+ 1)2*n  2n? 2n(n+1)
1 1 1
+— - +
33 4nl(n+1) 6r*(n+1)
1 logn  log(2n) 230 + 12 1
“n 2n(n+1) 2n(n+1) 12(2n+ D(n+ 1D?n 2n2(n+1)
1 5
+ +
1203 12n3(n+ 1)
I logn  log(2m) 230+ 12 5 1

=== - +
n 2nn+1) 2n(n+1) 12(12n+ )(n+1)?n 1203  12n3(n+1)
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7533

1 logn

log(2r) B

23n+ 12 5 11

Sn 2n(n+ 1) 2a(n+1)

where in the last step, we estimated 1

12n3(n+1) < 12n**

— + .
12020+ D(n+ 12n 1203 120*

1

By the inequality on the left side of formula (2.6), we have

23

23

12(12n + D(n + 12

144713(1 + 84+ L+ 12#3)
23

25 7 1
> BB T 1)
144n3 12n 6102 1213
23 1
2 - =
144n3  2n*
for every n > 2, therefore
< 1 logn log(2m) 23 1 5 N 11
X, < — — - - — - —
n 2nn+1) 2nn+1) 144n3 2n* 1203 12n*
gl_ logn _ log(2r) B 83 +i. (2.9)
n 2nn+1) 2nn+1) 144n3 2n*
Furthermore, it is easily seen that, when n > 3, this inequality implies the “simpler” inequality
1 1 log(2
oy <~ togn _ logGm) (2.10)
n 2nn+1) 2n(n+1)
which will be useful later.
Similarly, using the left inequalities in formulas (2.4) and (2.5) on log(1 + 1/n), we have
it nlog(l +1/n) —logn  log(2m) 25n + 13
w =1 > log(1+1/n)+ - -
Xn = log == > log(l + 1/n) 2n(n + 1) 2ntn+ 1) 12(12n + 13)(n + D)2
1 logn log(2r7) 1 1 25n + 13 1
“n 2n(n+1) 2n(n+1) 202 2n(n+1) 12120+ 13)n+ Dn2  4n2(n+ 1)
1 1
+ —_—
3n3  4nt
1 logn log(2n) 25n+ 13 3 N 1 1
n 2n(n+1) 2n(n+1) 12(2n+13)n+ Dn?>  4n2(m+1)  3n3  4n?
S 1 logn log(2m) 25n + 13 3 N 1 1
“n 2nn+1) 2n(n+1) 12120+ 13)n+ Dn2  4n3 363 4n?
1 logn  log(2n) = 25n + 13 o5 1
n 2n(n+1) 2n(n+1" 12(12n+ 13)(n+ Dn2 1203 4n4
where, in the penultimate step, we estimated m < %.
Since clearly
25n+ 13 < 25 N 13
12(12n+ 13)(n + D2~ 144n3  144n*°
we have
1 logn log(2m) 25 13 5 1

>__ —
T dnn+ 1)

AIMS Mathematics
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1 logn log(2n) 85 49

“n 2n(n+1) 2n(n+1) 144n3  144nt’

(2.11)

which implies the “simpler” inequality

1 1 log(2 1
> Lo _logn _ logCm 1. (2.12)
n 2n(n+1) 2n(n+1) n?

for each n > 1, which we will use later.
Let us then estimate the difference x,,; — x,, from above with the inequalities (2.9) and (2.11):

1 log(n + 1) log(2m) 83 N 3
n+l 2m+1Dn+2) 2m+Dm+2) 144n+1) 2(n+1)*
1 logn log(2m) 85 49
-—+ + + +
n 2nn+1) 2n(n+1) 144n3  144n*
< 1 nlog(n+1)—(n+2)logn N log(2r)
h nn+1) 2n(n+ D(n+2) nn+ D(n+2)
85(1 + 3n + 3n?) + 2n° 49 3

+ +
144n3(n + 1)3 144n*  2n*
1 nlog(l+1/n)—-2logn log2nr) 1
n? 2n(n+ 1)(n +2) n3 n3
85(1 + 3n + 3n?) 2 265

+ + ,
144m3(n + 13 144n3 1440

Xn+l — Xp <

; 1 1, 1 L1
where in the last step we used — o5 = =z + 2o S 2

Since 1 + 3n + 3n* < 4n?, for n > 4, we have

1 log(1 + 1/n) N logn N log(2r)
n2 2n+1)(n+2) nn+1n+2) n?
340 146 265
+ + +
144n(n + 1)>  144n3  144n*
1 log(1 + 1/n) logn log(2m)
- = - + +
n? 2n+1)n+2) n3 n3
N 340 N 146 N 265
144n*  144n3  144n*
1 log(1 + 1/n) N logn N log(2r) 146 605

+ +
n? 2n+1)n+2) n3 n3 144n3  144n*

Xp+1 — Xp S

and applying the left inequality in formula (2.4) to log(1 + 1/n), we conclude

1 1 1 logn log27) 146 605
Tl T S T T St D1 dRmtr Dt w14 1adnt
<_i_i_l_i_'_L_Flogn_|_10g(271) 146 N 605.
n? 2nd 2n*  4n* n3 n3 144n3  144n*
1 logn 74/144 +log(2m) 6
STat nz(i " / n’ = )+E’
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1 3n+2
for n > 4, where we used —5—mss = =55 + g S

On the other hand, using the inequalities (2.10) and (2.12) to estimate x,,,; — x,, from below, we have

1 3
2n3 + 2t

1 B log(n + 1) B log(2r) B 1
n+l 2m+1Dn+2) 2m+Dm+2) (n+1)3
1 logn N log(2m)

Xn+l — X 2

+
n 2nn+1) 2nn+1)

_ 1 B nlog(n+1)—(n+2)logn B 1 N log(2m)
nn+1) 2n(n+ (n+2) m+1)? nn+1)n+2)
_ i+ 1 _ log(1 +1/n) N logn 1 N log(2r)
n? nP(n+1) 2m+1Dm+2) nn+1Dn+2) m+1)7° nn+1Dn+2)
S _ 1 1 N logn N log(2m)
n? 2nn+D(n+2) nm+1Dm+2) nn+Dn+2)
1
=z — P

for every n € N.
Therefore, for n > 4, we conclude

1 1 1 74/144 + log(2 6
__2<Xn+l_Xn<__2+ Ogn+ / Og( 7T)+_4
n n

(2.13)

n3 n3 n

Furthermore, noticing that the term on the right is certainly negative for n > 4, we have in such a case
2
(xn+1 - xn) <=

Let us now estimate the sum x,,; + x, using the inequality (2.10):

1 B log(n + 1) B log(2r) N 1 B logn B log(2r)
n+l 2m+1D)(n+2) 2m+1D)n+2) n 2nn+1) 2nn+1)
_ 2n+1 nlogln+ 1)+ (n+2)logn log(2n)

Tan+1) 2n(n + D)(n +2) T n(n+2)
_ 2n+1 B log[n(n + 1)] B log(2r) N log(n + 1)

T+ 1) 2n(n+1) nn+2) nn+1)n+2)

Xp+1 T Xy <

and applying inequalities

3+

4l 2 1y 1 oy 2 1 1 1 _2 1 2
1= Gl <

+_
n n?

n(n+1): l+1/n/ "n n2 ¥ n* n n*
log[n(n + 1)] S logn S logn logn
2nin+1) ~ nn+1)~ n? n3
1 1 1
> -
nn+1) n*
1 1 2

2___
nn+2) n*

AIMS Mathematics Volume 10, Issue 3, 7526-7539.
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(where in the first one we used the inequality on the right side of formula (2.6)), we obtain

2 1 1+ log(2 1 2+ 2log(2 1 1
Xy 4w, < 2 28! + log( 7T)+0gn+ + 2 log( 7T)+ og(n + )'
n

n? n? n3 n3 3
Then, considering the inequality
logn + 2 + 2log(27) + log(n + 1) < % :

from which it obviously follows

1
ogn+2+210g(27r)+log(n+1) < 1 ,
n3 n3 n3 16n?

and which holds for n > 271 (keeping in mind the concavity of the left-hand side and checking
numerically), we conclude

0<x +x, <2 logn _ 15/16 +log(2m) _2

, 2.14
n n? n? ( )

S

for every n > 271.
For n > 271, both y = (*=*) and z = (*5=) are smaller than 1 in absolute value, so we can use
the inequalities in formula (2.7) and evaluate

2

Xn+1 — Xn 1 y
exp(%):ey<l—_y:1+y+1_y<1+y+y2,
since y < 0 and
Xnsl + Xpy 1 B 7 7 2
COSh(—)—COShZ<m—1+E+m<1+3+5,

since z> < 1. Therefore, for the inequalities (2.13)—(2.14), we obtain

Zexp(%) cosh(w) <1 +y+y2)(1 +i 4 8 )

2 22
_ Xn+l — Xn Xn+l = Xn\2 1 Xn+1 T X2 1 Xn+1 T X4
_2(” (73 ))(HE( ) +3(73 ))
1 logn 74/144+log2n) 3 1 )
<21 - — -+ —
( 2n? - 2n3 * 2n3 * n* - 4n*
(1 1(1 logn 15/16+10g(27r))2+ 1 )
2\n  2n? 2n? 2nt
:2(1 B L N logn N 74/144 + log(2n) N E)
2n?  2n? 2n3 4n*
1 15/16 + log(2n) + logn  (16logn + 15 + 1610g(27r))2 1
. (1 + — - + + —)
2n? 2n3 2048n* 2nt
:2(1 B L N logn N 74/144 + log(2n) N E)
2n?  2n? 2n3 4n*
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2n? 2n3 2048n*

(1 1 15/16 + log(2r) + logn N (161logn + 15 + 1610g(27r))2 + 1024)

It is easy to show that
(161logn + 15 + 161log(27))* + 1024 !
2048n* S 3037

for n > 304, hence

2exp (%)cosh (x"%w)

<2(1 B L N logn N 74/144 + log(2n) N E)(l N L B 14/16 + log(2n) + logn)
2n? 213 2n3 4n* 2n? 2n3
<2(1 B L N logn N 76/144 + 10g(27r))(1 N L _ logn B 14/16 + log(27r)),
2n?  2n3 2n3 2n2 203 2n3
for n > 468, since then ﬁ < g 4}‘,13. We therefore finally conclude that for n > 396, we have (after a

straightforward computation)

Zexp(x +1 — X )cosh(x +12‘|‘?C )<2(1 e og(n)/2 +101/ + log(2m)/ )

T 144 n’
2logn +76/144 + log(2n) logn+ 14/16 + log(2n)
2n3 2n3
<2(1 _ 25 _ L N log(n)/2 + 101/288 + log(27r)/2)
144n3  4n* n’

<2,

since, by a numerical check, there holds

25 1 log(n)/2 + 101/288 + log(2m)/2 -

2 0
144 an " 2

for each n > 3.
Since all the previous estimates are valid for n > 468, for such n € N, the sequence is decreasing.

By numerically checking the decreasing forn = 1,...,468, we then obtain that the Lalescu sequence
is always decreasing, remembering formula (2.2).
To numerically check the decreasing for n = 1,...,468, we used the following code for the Julia-

Version 1.10.4 programming language, with the Interval Arithmetic.jl package [5]:
using IntervalArithmetic
function rootfactorial(n)

I = @interval(l)
exp = @interval(l) / @interval(n)

for j = 1:n

I =1 * @interval(j) exp
end

return I
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end

function lalescu(n)
return rootfactorial(n+1) - rootfactorial(n)
end

setdisplay(:full)

for k = 1:500

println("a_$(k) = $(lalescu(k))"™)

if !(precedes(lalescu(k), lalescu(k-1)))
@error("lalescu($k) is not guaranteed to be smaller
than lalescu($k-1))")

end

end
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