Research article Special Issues

Positive periodic stability for a neutral-type host-macroparasite equation

  • Received: 23 February 2025 Revised: 18 March 2025 Accepted: 26 March 2025 Published: 31 March 2025
  • MSC : 34K14, 34K20

  • In this work, we study positive periodic solutions of a neutral-type host-macroparasite equation and establish the existence results of positive periodic solutions by using topological degree theory. Furthermore, based on the Lyapunov functional method and differential inequality analysis strategies, the dynamic behaviors of the host-macroparasite model are obtained. Finally, we present a numerical example to verify the effectiveness of the obtained results. It should be pointed out that the properties of neutral operators have significant applications in the proof. Our results have extended existing findings for host-macroparasite equation.

    Citation: Axiu Shu, Xiaoliang Li, Bo Du, Tao Wang. Positive periodic stability for a neutral-type host-macroparasite equation[J]. AIMS Mathematics, 2025, 10(3): 7449-7462. doi: 10.3934/math.2025342

    Related Papers:

  • In this work, we study positive periodic solutions of a neutral-type host-macroparasite equation and establish the existence results of positive periodic solutions by using topological degree theory. Furthermore, based on the Lyapunov functional method and differential inequality analysis strategies, the dynamic behaviors of the host-macroparasite model are obtained. Finally, we present a numerical example to verify the effectiveness of the obtained results. It should be pointed out that the properties of neutral operators have significant applications in the proof. Our results have extended existing findings for host-macroparasite equation.



    加载中


    [1] J. K. Hale, S. M. V. Lunel, Introduction to functional differential equations, New York: Springer, 1993. https://doi.org/10.1007/978-1-4612-4342-7
    [2] Q. Wang, B. X. Dai, Existence of positive periodic solutions for neutral population model with delays and impulse, Nonlinear Anal.-Theor., 69 (2008), 3919–3930. https://doi.org/10.1016/j.na.2007.10.033 doi: 10.1016/j.na.2007.10.033
    [3] X. Ma, X. B. Shu, J. Z. Mao, Existence of almost periodic solutions for fractional impulsive neutral stochastic differential equations with infinite delay, Stoch. Dynam., 20 (2020), 2050003. https://doi.org/10.1142/S0219493720500033 doi: 10.1142/S0219493720500033
    [4] X. B. Shu, F. Xu, Y. J. Shi, $S$-Asymptotically $\omega$-positive periodic solutions for a class of neutral fractional differential equations, Appl. Math. Comput., 270 (2015), 768–776. https://doi.org/10.1016/j.amc.2015.08.080 doi: 10.1016/j.amc.2015.08.080
    [5] S. P. Lu, W. G. Ge, Existence of positive periodic solutions for neutral logarithmic population model with multiple delays, J. Comput. Appl. Math., 166 (2004), 371–383. https://doi.org/10.1016/j.cam.2003.08.033 doi: 10.1016/j.cam.2003.08.033
    [6] N. H. Chen, Existence of periodic solutions for shunting inhibitory cellular neural networks with neutral delays, Discrete Dyn. Nat. Soc., 2013 (2013), 143706. https://doi.org/10.1155/2013/143706 doi: 10.1155/2013/143706
    [7] M. L. Tang, X. H. Tang, Positive periodic solutions for neutral multi-delay logarithmic population model, J. Inequal. Appl., 2012 (2012), 10. https://doi.org/10.1186/1029-242X-2012-10 doi: 10.1186/1029-242X-2012-10
    [8] Q. X. Zhu, Event-triggered sampling problem for exponential stability of stochastic nonlinear delay systems driven by Levy processes, IEEE T. Automat. Contr., 70 (2025), 1176–1183. https://doi.org/10.1109/TAC.2024.3448128 doi: 10.1109/TAC.2024.3448128
    [9] Z. Zhao, Q. X. Zhu, Stabilization of stochastic highly nonlinear delay systems with neutral-term, IEEE T. Automat. Contr., 68 (2023), 2544–2551. https://doi.org/10.1109/TAC.2022.3186827 doi: 10.1109/TAC.2022.3186827
    [10] M. Roohi, S. Mirzajani, A. R. Haghighi, A. Basse-O'Connor, Robust design of two-level non-integer SMC based on deep soft actor-critic for synchronization of chaotic fractional order memristive neural networks, Fractal Fract., 8 (2024), 548. https://doi.org/10.3390/fractalfract8090548 doi: 10.3390/fractalfract8090548
    [11] M. Roohi, S. Mirzajani, A. R. Haghighi, A. Basse-O'Connor, Robust stabilization of fractional-order hybrid optical system using a single-input TS-fuzzy sliding mode control strategy with input nonlinearities, AIMS Mathematics, 9 (2024), 25879–25907. https://doi.org/10.3934/math.20241264 doi: 10.3934/math.20241264
    [12] M. Roohi, S. Mirzajani, A. Basse-O'Connor, A no-chatter single-input finite-time PID sliding mode control technique for stabilization of a class of 4D chaotic fractional-order laser systems, Mathematics, 11 (2023), 4463. https://doi.org/10.3390/math11214463 doi: 10.3390/math11214463
    [13] R. M. Anderson, R. M. May, Infectious diseases of humans: dynamics and control, Oxford: Oxford University Press, 1991. https://doi.org/10.1093/oso/9780198545996.001.0001
    [14] M. Elabbasy, S. H. Saker, K. Saif, Oscillation in host macroparasite model with delay time, Far East Journal of Applied Mathematics, 4 (2000), 119–142.
    [15] S. H. Sakera, J. O. Alzabut, Periodic solutions, global attractivity and oscillation of an impulsive delay host-macroparasite model, Math. Comput. Model., 45 (2007), 531–543. https://doi.org/10.1016/j.mcm.2006.07.001 doi: 10.1016/j.mcm.2006.07.001
    [16] Z. J. Yao, Existence and global exponential stability of an almost periodic solution for a host-macroparasite equation on time scales, Adv. Differ. Equ., 2015 (2015), 41.
    [17] Z. J. Yao, Existence and exponential stability of almost periodic positive solution for host-macroparasite difference model, Int. J. Biomath., 9 (2016), 1650028. https://doi.org/10.1142/S1793524516500285 doi: 10.1142/S1793524516500285
    [18] M. Zhang, Periodic solutions of linear and quasilinear neutral functional differential equations, J. Math. Anal. Appl., 189 (1995), 378–392. https://doi.org/10.1006/jmaa.1995.1025 doi: 10.1006/jmaa.1995.1025
    [19] S. P. Lu, W. G. Ge, Z. X. Zheng, Periodic solutions to neutral differential equation with deviating arguments, Appl. Math. Comupt., 152 (2004), 17–27. https://doi.org/10.1016/S0096-3003(03)00530-7 doi: 10.1016/S0096-3003(03)00530-7
    [20] P. Amster, Topological methods in the study of boundary value problems, New York: Springer, 2014. https://doi.org/10.1007/978-1-4614-8893-4
    [21] H. Meng, F. Long, Periodic solutions for a Li$\acute{e}$nard type $p$-Laplacian differential equation, J. Comput. Appl. Math., 224 (2009), 696–701. https://doi.org/10.1016/j.cam.2008.06.001 doi: 10.1016/j.cam.2008.06.001
    [22] F. X. Zhang, Y. Li, Existence and uniqueness of periodic solutions for a kind of duffing type $p$-Laplacian equation, Nonlinear Analy.-Real, 9 (2008), 985–989. https://doi.org/10.1016/j.nonrwa.2007.01.013 doi: 10.1016/j.nonrwa.2007.01.013
    [23] H. J. Yang, X. L. Han, Existence and uniqueness of periodic solutions for a class of higher order differential equations, Mediterr. J. Math., 20 (2023), 282. https://doi.org/10.1007/s00009-023-02477-0 doi: 10.1007/s00009-023-02477-0
    [24] X. M. Wu, J. W. Li, Z. C. Wang, Existence of positive periodic solutions for a generalized prey-predator model with harvesting term, Comput. Math. Appl., 55 (2008), 1895–1905. https://doi.org/10.1016/j.camwa.2007.11.020 doi: 10.1016/j.camwa.2007.11.020
    [25] Z. Q. Zhang, Periodic solutions of a predator-prey system with stage-structures for predator and prey, J. Math. Anal. Appl., 302 (2005), 291–305. https://doi.org/10.1016/j.jmaa.2003.11.033 doi: 10.1016/j.jmaa.2003.11.033
    [26] R. E. Gains, J. L. Mawhin, Coincide degree and nonlinear differential equation, Berlin: Springer, 1977. https://doi.org/10.1007/BFb0089537
    [27] H. K. Khalil, Nonlinear systems, 3 Eds., New Jersey: Prentice Hall, 2002.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(618) PDF downloads(26) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog