In this paper, we present accurate and well-designed benchmark problems for evaluating the effectiveness and precision of physics-informed neural networks (PINNs). The presented problems were generated using the Allen–Cahn (AC) equation, which models the mechanism of phase separation in binary alloy systems and simulates the temporal evolution of interfaces. The AC equation possesses the property of motion by mean curvature, which means that, in the sharp interface limit, the evolution of the interface described by the equation is governed by its mean curvature. Specifically, the velocity of the interface is proportional to its mean curvature, which implies the tendency of the interface to minimize its surface area. This property makes the AC equation a powerful mathematical model for capturing the dynamics of interface motion and phase separation processes in various physical and biological systems. The benchmark source codes for the 1D, 2D, and 3D AC equations are provided for interested researchers.
Citation: Hyun Geun Lee, Youngjin Hwang, Yunjae Nam, Sangkwon Kim, Junseok Kim. Benchmark problems for physics-informed neural networks: The Allen–Cahn equation[J]. AIMS Mathematics, 2025, 10(3): 7319-7338. doi: 10.3934/math.2025335
In this paper, we present accurate and well-designed benchmark problems for evaluating the effectiveness and precision of physics-informed neural networks (PINNs). The presented problems were generated using the Allen–Cahn (AC) equation, which models the mechanism of phase separation in binary alloy systems and simulates the temporal evolution of interfaces. The AC equation possesses the property of motion by mean curvature, which means that, in the sharp interface limit, the evolution of the interface described by the equation is governed by its mean curvature. Specifically, the velocity of the interface is proportional to its mean curvature, which implies the tendency of the interface to minimize its surface area. This property makes the AC equation a powerful mathematical model for capturing the dynamics of interface motion and phase separation processes in various physical and biological systems. The benchmark source codes for the 1D, 2D, and 3D AC equations are provided for interested researchers.
| [1] |
S. M. Allen, J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1085–1095. https://doi.org/10.1016/0001-6160(79)90196-2 doi: 10.1016/0001-6160(79)90196-2
|
| [2] |
W. Xie, Q. Xia, Q. Yu, Y. Li, An effective phase field method for topology optimization without the curvature effects, Comput. Math. Appl., 146 (2023), 200–212. https://doi.org/10.1016/j.camwa.2023.06.037 doi: 10.1016/j.camwa.2023.06.037
|
| [3] |
Y. Wang, J. Yang, X. Xiao, X. Feng, Efficient numerical simulation for the dendritic crystal growth with melt convection in complex domains, Int. J. Heat Mass Transfer, 233 (2024), 126036. https://doi.org/10.1016/j.ijheatmasstransfer.2024.126036 doi: 10.1016/j.ijheatmasstransfer.2024.126036
|
| [4] |
Y. Li, K. Qin, Q. Xia, J. Kim, A second-order unconditionally stable method for the anisotropic dendritic crystal growth model with an orientation-field, Appl. Numer. Math., 184 (2023), 512–526. https://doi.org/10.1016/j.apnum.2022.11.006 doi: 10.1016/j.apnum.2022.11.006
|
| [5] |
C. Liu, Z. Qiao, Q. Zhang, Multi-phase image segmentation by the Allen–Cahn Chan–Vese model, Comput. Math. Appl., 141 (2023), 207–220. https://doi.org/10.1016/j.camwa.2022.12.020 doi: 10.1016/j.camwa.2022.12.020
|
| [6] |
Q. Xia, J. Kim, B. Xia, Y. Li, An unconditionally energy stable method for binary incompressible heat conductive fluids based on the phase-field model, Comput. Math. Appl., 123 (2022), 26–39. https://doi.org/10.1016/j.camwa.2022.07.022 doi: 10.1016/j.camwa.2022.07.022
|
| [7] |
Q. Xia, Y. Liu, J. Kim, Y. Li, Binary thermal fluids computation over arbitrary surfaces with second-order accuracy and unconditional energy stability based on phase-field model, J. Comput. Appl. Math., 433 (2023), 115319. https://doi.org/10.1016/j.cam.2023.115319 doi: 10.1016/j.cam.2023.115319
|
| [8] |
Z. Lu, J. Wang, A novel and efficient multi-scale feature extraction method for EEG classification, AIMS Math., 9 (2024), 16605–16622. https://doi.org/10.3934/math.2024805 doi: 10.3934/math.2024805
|
| [9] |
S. Sun, Q. Gong, Y. Ni, M. Yi, A micromagnetic-mechanically coupled phase-field model for fracture and fatigue of magnetostrictive alloys, J. Mech. Phys. Solids, 191 (2024), 105767. https://doi.org/10.1016/j.jmps.2024.105767 doi: 10.1016/j.jmps.2024.105767
|
| [10] |
Z. Wang, G. Wang, A coupled MPM and CBFEM framework for large deformation simulation of porous media interacting with pore and free fluid, Comput. Geotech., 163 (2023), 105746. https://doi.org/10.1016/j.compgeo.2023.105746 doi: 10.1016/j.compgeo.2023.105746
|
| [11] |
B. Xia, X. Xi, R. Yu, P. Zhang, Unconditional energy-stable method for the Swift–Hohenberg equation over arbitrarily curved surfaces with second-order accuracy, Appl. Numer. Math., 198 (2024), 192–201. https://doi.org/10.1016/j.apnum.2024.01.005 doi: 10.1016/j.apnum.2024.01.005
|
| [12] |
X. Hu, Q. Xia, B. Xia, Y. Li, A second-order accurate numerical method with unconditional energy stability for the Lifshitz–Petrich equation on curved surfaces, Appl. Math. Lett., 163 (2025), 109439. https://doi.org/10.1016/j.aml.2024.109439 doi: 10.1016/j.aml.2024.109439
|
| [13] |
M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378 (2019), 686–707. https://doi.org/10.1016/j.jcp.2018.10.045 doi: 10.1016/j.jcp.2018.10.045
|
| [14] |
C. L. Wight, J. Zhao, Solving Allen–Cahn and Cahn–Hilliard equations using the adaptive physics informed neural networks, Commun. Comput. Phys., 29 (2021), 930–954. https://doi.org/10.4208/cicp.OA-2020-0086 doi: 10.4208/cicp.OA-2020-0086
|
| [15] |
X. Song, B. Xia, Y. Li, An efficient data assimilation based unconditionally stable scheme for Cahn–Hilliard equation, Comput. Appl. Math., 43 (2024), 121. https://doi.org/10.1007/s40314-024-02632-7 doi: 10.1007/s40314-024-02632-7
|
| [16] |
X. Song, Q. Xia, J. Kim, Y. Li, An unconditional energy stable data assimilation scheme for Navier–Stokes–Cahn–Hilliard equations with local discretized observed data, Comput. Math. Appl., 164 (2024), 21–33. https://doi.org/10.1016/j.camwa.2024.03.018 doi: 10.1016/j.camwa.2024.03.018
|
| [17] |
Y. Li, R. Liu, Q. Xia, C. He, Z. Li, First- and second-order unconditionally stable direct discretization methods for multi-component Cahn–Hilliard system on surfaces, J. Comput. Appl. Math., 401 (2022), 113778. https://doi.org/10.1016/j.cam.2021.113778 doi: 10.1016/j.cam.2021.113778
|
| [18] |
X. Meng, Z. Li, D. Zhang, G. E. Karniadakis, PPINN: Parareal physics-informed neural network for time-dependent PDEs, Comput. Methods Appl. Mech. Eng., 370 (2020), 113250. https://doi.org/10.1016/j.cma.2020.113250 doi: 10.1016/j.cma.2020.113250
|
| [19] |
A. D. Jagtap, E. Kharazmi, G. E. Karniadakis, Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems, Comput. Methods Appl. Mech. Eng., 365 (2020), 113028. https://doi.org/10.1016/j.cma.2020.113028 doi: 10.1016/j.cma.2020.113028
|
| [20] |
L. Lu, X. Meng, Z. Mao, G. E. Karniadakis, Deepxde: A deep learning library for solving differential equations, SIAM Rev., 63 (2021), 208–228. https://doi.org/10.1137/19M1274067 doi: 10.1137/19M1274067
|
| [21] |
S. J. Anagnostopoulos, J. D. Toscano, N. Stergiopulos, G. E. Karniadakis, Residual-based attention in physics-informed neural networks, Comput. Mech., 42 (2024), 1273–1285. https://doi.org/10.1016/j.cma.2024.116805 doi: 10.1016/j.cma.2024.116805
|
| [22] |
P. Roy, S. T. Castonguay, Exact enforcement of temporal continuity in sequential physics-informed neural networks, Comput. Methods Appl. Mech. Eng., 430 (2024), 117197. https://doi.org/10.1016/j.cma.2024.117197 doi: 10.1016/j.cma.2024.117197
|
| [23] |
S. Monaco, D. Apiletti, Training physics-informed neural networks: One learning to rule them all, Results Eng., 18 (2023), 101023. https://doi.org/10.1016/j.rineng.2023.101023 doi: 10.1016/j.rineng.2023.101023
|
| [24] |
X. Huang, T. Alkhalifah, Efficient physics-informed neural networks using hash encoding, J. Comput. Phys., 501 (2024), 112760. https://doi.org/10.1016/j.jcp.2024.112760 doi: 10.1016/j.jcp.2024.112760
|
| [25] |
L. D. McClenny, U. M. Braga-Neto, Self-adaptive physics-informed neural networks, J. Comput. Phys., 474 (2023), 111722. https://doi.org/10.1016/j.jcp.2022.111722 doi: 10.1016/j.jcp.2022.111722
|
| [26] |
A. Kopaniaáková, H. Kothari, G. E. Karniadakis, R. Krause, Enhancing training of physics-informed neural networks using domain decomposition-based preconditioning strategies, SIAM J. Sci. Comput., 46 (2024), S46–S67. https://doi.org/10.1137/23M1583375 doi: 10.1137/23M1583375
|
| [27] | R. Qiu, R. Huang, Y. Xiao, J. Wang, Z. Zhang, J. Yue, et al., Physics-informed neural networks for phase-field method in two-phase flow, Phys. Fluids, 34 (2022). https://doi.org/10.1063/5.0091063 |
| [28] |
Y. Ghaffari Motlagh, P. K. Jimack, R. de Borst, Deep learning phase-field model for brittle fractures, Int. J. Numer. Methods Eng., 124, (2023), 620–638. https://doi.org/10.1002/nme.7135 doi: 10.1002/nme.7135
|
| [29] |
W. Li, M. Z. Bazant, J. Zhu, Phase-Field DeepONet: Physics-informed deep operator neural network for fast simulations of pattern formation governed by gradient flows of free-energy functionals, Comput. Meth. Appl. Mech. Eng., 416 (2023), 116299. https://doi.org/10.1016/j.cma.2023.116299 doi: 10.1016/j.cma.2023.116299
|
| [30] |
S. Ham, J. Kim, Stability analysis for a maximum principle preserving explicit scheme of the Allen–Cahn equation, Math. Comput. Simul., 207 (2023), 453–465. https://doi.org/10.1016/j.matcom.2023.01.016 doi: 10.1016/j.matcom.2023.01.016
|
| [31] |
M. Penwarden, A. D. Jagtap, S. Zhe, G. E. Karniadakis, R. M. Kirby, A unified scalable framework for causal sweeping strategies for Physics-Informed Neural Networks (PINNs) and their temporal decompositions, J. Comput. Phys., 493 (2023), 112464. https://doi.org/10.1016/j.jcp.2023.112464 doi: 10.1016/j.jcp.2023.112464
|
| [32] |
S. Kim, J. Kim, Automatic binary data classification using a modified Allen–Cahn equation, Int. J. Pattern Recognit. Artif. Intell., 35 (2021), 2150013. https://doi.org/10.1142/S0218001421500130 doi: 10.1142/S0218001421500130
|
| [33] |
Y. Li, J. Shin, Y. Choi, J. Kim, Three-dimensional volume reconstruction from slice data using phase-field models, Comput. Vis. Image Underst., 137 (2015), 115–124. https://doi.org/10.1016/j.cviu.2015.02.001 doi: 10.1016/j.cviu.2015.02.001
|