Research article

The existence of a nontrivial solution to an elliptic equation with critical Sobolev exponent and a general potential well

  • Published: 28 March 2025
  • MSC : 35A15, 35J60

  • The purpose of this paper is to examine a class of elliptic problems that involve negative potentials $ a\in L^{\frac{N}{2} }(\Omega) $ and critical nonlinearities. To discuss this, the well-known eigenvalue problem $ -\Delta- a $ is considered. Under some mild assumptions, an existence result is obtained, which extends the existing results to the critical case.

    Citation: Ye Xue, Yongzhen Ge, Yunlan Wei. The existence of a nontrivial solution to an elliptic equation with critical Sobolev exponent and a general potential well[J]. AIMS Mathematics, 2025, 10(3): 7339-7354. doi: 10.3934/math.2025336

    Related Papers:

  • The purpose of this paper is to examine a class of elliptic problems that involve negative potentials $ a\in L^{\frac{N}{2} }(\Omega) $ and critical nonlinearities. To discuss this, the well-known eigenvalue problem $ -\Delta- a $ is considered. Under some mild assumptions, an existence result is obtained, which extends the existing results to the critical case.



    加载中


    [1] C. O. Alves, M. A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differential Equations, 254 (2013), 313–345. https://doi.org/10.1016/j.jde.2012.11.013 doi: 10.1016/j.jde.2012.11.013
    [2] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437–477. https://doi.org/10.1002/cpa.3160360405 doi: 10.1002/cpa.3160360405
    [3] W. Chen, Y. Wu, S. Jhang, On nontrivial solutions of nonlinear Schrödinger equations with sign-changing potential, Adv. Differ. Equ., 232 (2021). https://doi.org/10.1186/s13662-021-03390-0
    [4] Y. H. Ding, J. Wei, Multiplicity of semiclassical solutions to nonlinear Schrödinger equations, J. Fixed Point Theory Appl., 19 (2017), 987–1010. https://doi.org/10.1007/s11784-017-0410-8 doi: 10.1007/s11784-017-0410-8
    [5] A. R. El Amrouss, Multiplicity results for semilinear elliptic problems with resonance, Nonlinear Anal., 65 (2006), 634–646. https://doi.org/10.1016/j.na.2005.09.033 doi: 10.1016/j.na.2005.09.033
    [6] A. Fiscella, G. M. Bisci, R. Servadei, Multiplicity results for fractional Laplace problems with critical growth, Manuscripta Math., 155 (2018), 369–388. https://doi.org/10.1007/s00229-017-0947-2 doi: 10.1007/s00229-017-0947-2
    [7] Z. Q. Han, Y. Xue, Nontrivial solutions to non-local problems with sublinear or superlinear nonlinearities, Partial Differ. Equ. Appl., 1 (2020), 1–19. https://doi.org/10.1007/s42985-020-00034-y doi: 10.1007/s42985-020-00034-y
    [8] X. F. Ke, C. L. Tang, Existence and multiplicity of solutions to semilinear elliptic equation with nonlinear term of superlinear and subcritical growth, Electron. J. Differential Equations, 88 (2018), 1–17.
    [9] J. Liu, J. F. Liao, C. L. Tang, Ground state solution for a class of Schrödinger equations involving general critical growth term, Nonlinearity, 30 (2017), 899–911. https://doi.org/10.1088/1361-6544/aa5659 doi: 10.1088/1361-6544/aa5659
    [10] P. P. Li, H. R. Sun, Existence results and bifuecation for nonlocal fractional problems with critical Sobolev exponent, Comput. Math. Appl., 27 (2019), 1–12. https://doi.org/10.1016/j.camwa.2019.04.005 doi: 10.1016/j.camwa.2019.04.005
    [11] G. B. Li, C. H. Wang, The existence of a nontrivial solution to a nonlinear elliptic problem of linking type without the Ambrosetti-Rabinowitz condition, Ann. Acad. Sci. Fenn. Math., 36 (2011), 461–480. https://doi.org/10.5186/aasfm.2011.3627 doi: 10.5186/aasfm.2011.3627
    [12] G. M. Bisci, R. Servadei, A Brezis-Nirenberg splitting approach for nonlocal fractional equations, Nonlinear Anal., 119 (2015), 341–353. https://doi.org/10.1016/j.na.2014.10.025 doi: 10.1016/j.na.2014.10.025
    [13] R. Servadei, E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887–898. https://doi.org/10.1016/j.jmaa.2011.12.032 doi: 10.1016/j.jmaa.2011.12.032
    [14] R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67–102. https://doi.org/10.1090/S0002-9947-2014-05884-4 doi: 10.1090/S0002-9947-2014-05884-4
    [15] R. Servadei, E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent, Rev. Mat. Complut., 28 (2015), 655–676. https://doi.org/10.1007/s13163-015-0170-1 doi: 10.1007/s13163-015-0170-1
    [16] R. Servadei, E. Valdinoci, A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12 (2013), 2445–2464. https://doi.org/10.3934/cpaa.2013.12.2445 doi: 10.3934/cpaa.2013.12.2445
    [17] M. Willem, Minimax theorems, Boston: Birkhäuser, 1996. https://doi.org/10.1007/978-1-4612-4146-1
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(834) PDF downloads(62) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog