In Banach spaces, first we present a new geometric constant, $ C_{Z}^{(q)}(t, B) $, which is closely related to the Zb$ \check{a} $ganu constant. We prove that $ \frac{(t+2)^{q}}{2^{q-1}\left(2^{q-1}+t^{q}\right)} $ and $ \frac{4}{3} $ are respectively the lower and upper bounds for $ C_{Z}^{(q)}(t, B) $. Furthermore, we also derive that $ C_{Z}^{(q)}(t, B) = C_{Z}^{(q)}(t, \widetilde{B}) $, where $ \widetilde{B} $ denotes the ultrapower spaces of $ B $. Then, we can establish certain sufficient conditions that ensure a Banach spaces possesses a normal structure, which involve different constants such as the Zb$ \check{a} $ganu constant and Domínguez–Benavides coefficient.
Citation: Qian Li, Zhouping Yin, Yuxin Wang, Qi Liu, Hongmei Zhang. A new constant in Banach spaces based on the Zb$ \check{a} $ganu constant $ C_{Z}(B) $[J]. AIMS Mathematics, 2025, 10(3): 6480-6491. doi: 10.3934/math.2025296
In Banach spaces, first we present a new geometric constant, $ C_{Z}^{(q)}(t, B) $, which is closely related to the Zb$ \check{a} $ganu constant. We prove that $ \frac{(t+2)^{q}}{2^{q-1}\left(2^{q-1}+t^{q}\right)} $ and $ \frac{4}{3} $ are respectively the lower and upper bounds for $ C_{Z}^{(q)}(t, B) $. Furthermore, we also derive that $ C_{Z}^{(q)}(t, B) = C_{Z}^{(q)}(t, \widetilde{B}) $, where $ \widetilde{B} $ denotes the ultrapower spaces of $ B $. Then, we can establish certain sufficient conditions that ensure a Banach spaces possesses a normal structure, which involve different constants such as the Zb$ \check{a} $ganu constant and Domínguez–Benavides coefficient.
| [1] |
S. Dhompongsa, A. Kaewkhao, S. Tasena, On a generalized James constant, J. Math. Anal. Appl., 285 (2003), 419–435. https://doi.org/10.1016/S0022-247X(03)00408-6 doi: 10.1016/S0022-247X(03)00408-6
|
| [2] | Y. Takahashi, Some geometric constants of Banach spaces: a unified approach, In: M. Kato, L. Maligranda, Banach and function spaces II, Yokohama Publishers, 2007,191–220. |
| [3] |
R. C. James, Uniformly non-square Banach spaces, Ann. Math., 80 (1964), 542–550. https://doi.org/10.2307/1970663 doi: 10.2307/1970663
|
| [4] |
D. H. Cho, Y. S. Choi, The Bishop-Phelps-Bollobás theorem on bounded closed convex sets, J. Lond. Math. Soc., 93 (2016), 502–518. https://doi.org/10.1112/jlms/jdw002 doi: 10.1112/jlms/jdw002
|
| [5] |
R. Tanaka, Tingley's problem on symmetric absolute normalized norms on $\mathbb{R}^2$, Acta Math. Sin.-English Ser., 30 (2014), 1324–1340. https://doi.org/10.1007/s10114-014-3491-y doi: 10.1007/s10114-014-3491-y
|
| [6] | M. S. Brodskii, D. P. Milman, On the center of a convex set, Dokl. Akad. Nauk SSSR, 59 (1948), 837–840. |
| [7] |
W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Am. Math. Mon., 72 (1965), 1004–1006. https://doi.org/10.2307/2313345 doi: 10.2307/2313345
|
| [8] |
X. Wang, C. Zhang, Y. Cui, Some sufficient conditions for fixed points of multivalued nonexpansive mappings in Banach spaces, J. Math. Inequal., 11 (2017), 113–120. https://doi.org/10.7153/jmi-11-10 doi: 10.7153/jmi-11-10
|
| [9] |
Z. Zuo, C. Tang, X. Chen, L. Wang, Jordan-von Neumann type constant and fixed points for multivalued nonexpansive mappings, J. Math. Inequal., 10 (2016), 649–657. https://doi.org/10.7153/jmi-10-52 doi: 10.7153/jmi-10-52
|
| [10] |
S. Reich, The fixed point property for non-expansive mappings, Am. Math. Mon., 83 (1976), 266–268. https://doi.org/10.1080/00029890.1976.11994096 doi: 10.1080/00029890.1976.11994096
|
| [11] |
S. Reich, The fixed point property for non-expansive mappings, $II$, Am. Math. Mon., 87 (1980), 292–294. https://doi.org/10.1080/00029890.1980.11995019 doi: 10.1080/00029890.1980.11995019
|
| [12] | J. Gao, K. S. Lau, On two classes of Banach spaces with uniform normal structure, Stud Math., 99 (1991), 41–56. |
| [13] |
P. Jordan, J. Neumann, On inner products in linear, metric spaces, Ann. Math., 36 (1935), 719–723. https://doi.org/10.2307/1968653 doi: 10.2307/1968653
|
| [14] |
E. Llorens-Fuster, E. M. Mazcuñán-Navarro, S. Reich, The Ptolemy and Zb$\check{a}$ganu constants of normed spaces, Nonlinear Anal., 72 (2010), 3984–3993. https://doi.org/10.1016/j.na.2010.01.030 doi: 10.1016/j.na.2010.01.030
|
| [15] |
S. Dhompongsa, P. Piraisangjun, S. Saejung, Generalised Jordan-von Neumann constants and uniform normal structure, Bull. Aust. Math. Soc., 67 (2003), 225–240. https://doi.org/10.1017/S0004972700033694 doi: 10.1017/S0004972700033694
|
| [16] |
Y. Cui, W. Huang, H. Hudzik, R. Kaczmarek, Generalized von Neumann-Jordan constant and its relationship to the fixed point property, Fixed Point Theory Appl., 2015 (2015), 40. https://doi.org/10.1186/s13663-015-0288-3 doi: 10.1186/s13663-015-0288-3
|
| [17] |
M. Dinarvand, On a generalized geometric constant and sufficient conditions for normal structure in Banach spaces, Acta Math. Sci., 37 (2017), 1209–1220. https://doi.org/10.1016/S0252-9602(17)30068-1 doi: 10.1016/S0252-9602(17)30068-1
|
| [18] | Z. Zuo, Calculation and application of some geometric constants on Banach space, Ph.D. Thesis, Southwest University, 2018. |
| [19] |
Z Zuo, The generalized von Neumann-Jordan type constant and fixed points for multivalued nonexpansive mappings, ScienceAsia, 45 (2019), 292–297. https://doi.org/10.2306/scienceasia1513-1874.2019.45.292 doi: 10.2306/scienceasia1513-1874.2019.45.292
|
| [20] | M. A. Khamsi, Uniform smoothness implies super-normal structure property, Nonlinear Anal., 19 (1992), 1063–1069. |
| [21] |
A. Wiśnicki, J. Wośko, Banach ultrapowers and multivalued nonexpansive mappings, J. Math. Anal. Appl., 326 (2007), 845–857. https://doi.org/10.1016/j.jmaa.2006.03.052 doi: 10.1016/j.jmaa.2006.03.052
|
| [22] | M. Dinarvand, On some Banach space properties sufficient for normal structure, Filomat, 31 (2017), 1305–1315. |
| [23] |
Z. Zuo, C. Tang, On James and Jordan-von Neumann type constants and normal structure in Banach spaces, Topol. Methods Nonlinear Anal., 49 (2017), 615–623. https://doi.org/10.12775/TMNA.2016.094 doi: 10.12775/TMNA.2016.094
|
| [24] | T. D. Benavides, A geometrical coefficient implying the fixed point property and stability results, Houston J. Math., 22 (1996), 835–849. |
| [25] |
L. Tang, D. Ji, X. Wang, On a generalized Jordan-von Neumann type constant and normal structure, Math. Inequal. Appl., 27 (2024), 347. https://doi.org/10.7153/mia-2024-27-25 doi: 10.7153/mia-2024-27-25
|