Research article Special Issues

Non-separated inclusion problem via generalized Hilfer and Caputo operators

  • Received: 08 January 2025 Revised: 12 March 2025 Accepted: 18 March 2025 Published: 21 March 2025
  • MSC : 34A08, 34A12, 34B15

  • We aimed to analyze a new class of sequential fractional differential inclusions that involves a combination of $ \varsigma $-Hilfer and $ \varsigma $-Caputo fractional derivative operators, along with non-separated boundary conditions. Two cases of convex-valued and non-convex-valued set-valued maps are considered. Our outcomes are obtained from some famous theorems of fixed point method within the framework of the set-valued analysis. Additionally, some examples are provided to illustrate the applicability of our outcomes.

    Citation: Adel Lachouri, Naas Adjimi, Mohammad Esmael Samei, Manuel De la Sen. Non-separated inclusion problem via generalized Hilfer and Caputo operators[J]. AIMS Mathematics, 2025, 10(3): 6448-6468. doi: 10.3934/math.2025294

    Related Papers:

  • We aimed to analyze a new class of sequential fractional differential inclusions that involves a combination of $ \varsigma $-Hilfer and $ \varsigma $-Caputo fractional derivative operators, along with non-separated boundary conditions. Two cases of convex-valued and non-convex-valued set-valued maps are considered. Our outcomes are obtained from some famous theorems of fixed point method within the framework of the set-valued analysis. Additionally, some examples are provided to illustrate the applicability of our outcomes.



    加载中


    [1] S. Rogosin, M. Karapiyenya, Fractional models for analysis of economic risks, Fract. Calc. Appl. Anal., 26 (2023), 2602–2617. https://doi.org/10.1007/s13540-023-00202-y doi: 10.1007/s13540-023-00202-y
    [2] B. Acay, E. Bas, T. Abdeljawad, Fractional economic models based on market equilibrium in the frame of different type kernels, Chaos Soliton. Fract., 130 (2020), 109438. https://doi.org/10.1016/j.chaos.2019.109438 doi: 10.1016/j.chaos.2019.109438
    [3] R. P. Chaouhan, S. Kumar, B. S. T. Alkahtani, S. S. Alzaid, A study on fractional order financial model by using Caputo-Fabrizio derivative, Results Phys., 57 (2024), 107335. https://doi.org/10.1016/j.rinp.2024.107335 doi: 10.1016/j.rinp.2024.107335
    [4] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 2003 (2003), 3413–3442. https://doi.org/10.1155/S0161171203301486 doi: 10.1155/S0161171203301486
    [5] J. Alzabut, S. R. Grace, S. S. Santra, M. E. Samei, Oscillation of even-order nonlinear dynamic equations with sublinear and superlinear neutral terms on time scales, Qual. Theory Dyn. Syst., 23 (2024), 103. https://doi.org/10.1007/s12346-024-00961-w doi: 10.1007/s12346-024-00961-w
    [6] S. T. M. Thabet, M. Vivas-Cortez, I. Kedim, M. E. Samei, M. I. Ayari, Solvability of $\varrho$-Hilfer fractional snap dynamic system on unbounded domains, Fractals Fract., 7 (2023), 607. https://doi.org/10.3390/fractalfract7080607 doi: 10.3390/fractalfract7080607
    [7] R. Magin, Fractional calculus in bioengineering, part 1, Criti. Rev. Biomed. Eng., 32 (2004), 1–104. https://doi.org/10.1615/CritRevBiomedEng.v32.i1.10 doi: 10.1615/CritRevBiomedEng.v32.i1.10
    [8] A. S. Alshehry, S. Mukhtar, A. M. Mahnashi, Analytical methods in fractional biological population modeling: unveiling solitary wave solutions, AIMS Math., 9 (2024), 15,966–15,987. https://doi.org/10.3934/math.2024773 doi: 10.3934/math.2024773
    [9] B. Mohammadaliee, V. Roomi, M. E. Samei, SEIARS model for analyzing COVID-19 pandemic process via ψ-Caputo fractional derivative and numerical simulation, Sci. Rep., 14 (2024), 723. https://doi.org/10.1038/s41598-024-51415-x doi: 10.1038/s41598-024-51415-x
    [10] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779
    [11] C. Thaiprayoon, W. Sudsutad, J. Alzabut, S. Etemad, S. Rezapour, On the qualitative analysis of the fractional boundary value problem describing thermostat control model via $\psi$-Hilfer fractional operator, Adv. Differ. Equ., 2021 (2021), 201. https://doi.org/10.1186/s13662-021-03359-z doi: 10.1186/s13662-021-03359-z
    [12] D. Baleanu, J. A. T. Machado, A. C. J. Luo, Fractional dynamics and control, Springer, 2002.
    [13] J. V. C. Sousa, E. C. D. Oliveira, On the $\vartheta$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
    [14] S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Korean Math. Soc., 55 (2018), 1639–1657. https://doi.org/10.4134/BKMS.b170887 doi: 10.4134/BKMS.b170887
    [15] A. Samadi, S. K. Ntouyas, J. Tariboon, Mixed Hilfer and caputo fractional Riemann-Stieltjes integro-differential equations with non-separated boundary conditions, Mathematics, 12 (2024), 1361. https://doi.org/10.3390/math12091361 doi: 10.3390/math12091361
    [16] I. Ahmed, S. K. Ntouyas, J. Tariboon, Separated boundary value problems via quantum Hilfer and Caputo operators. AIMS Math., 9 (2024), 19473–19494. https://doi.org/10.3934/math.2024949
    [17] A. Lachouri, M. S. Abdo, A. Ardjouni, S. Etemad, S. Rezapou, A generalized neutral-type inclusion problem in the frame of the generalized Caputo fractional derivatives, Adv. Differ. Equ., 2021 (2021), 404. https://doi.org/10.1186/s13662-021-03559-7 doi: 10.1186/s13662-021-03559-7
    [18] S. Surang, S. K. Ntouyasm, S. Ayub, T. Jessada, Boundary value problems for $\psi$-Hilfer type sequential fractional differential equations and inclusions with integral multi-point boundary conditions, Mathematics, 9 (2021), 1001. https://doi.org/10.3390/math9091001 doi: 10.3390/math9091001
    [19] S. Etemad, I. Iqbal, M. E. Samei, S. Rezapour, J. Alzabut, W. Sudsutad, et al., Some inequalities on multi-functions for applying fractional caputo-hadamard jerk inclusion system, J. Inequal. Appl., 2022 (2022), 84. https://doi.org/10.1186/s13660-022-02819-8 doi: 10.1186/s13660-022-02819-8
    [20] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst.-Ser. S, 13 (2019), 709–722. https://doi.org/10.3934/dcdss.2020039 doi: 10.3934/dcdss.2020039
    [21] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [22] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach Science Publishers, 1993.
    [23] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevier, 2006,
    [24] M. Aitalioubrahim, S. Sajid, Higher-order boundary value problems for Carathéodory differential inclusions, Miskolc Math. Notes, 9 (2008), 7–15. https://doi.org/ 10.18514/MMN.2008.180 doi: 10.18514/MMN.2008.180
    [25] K. Deimling, Multivalued differential equations, De Gruyter, 1992. https://doi.org/10.1515/9783110874228
    [26] A. Lasota, Z. Opial, An application of the Kakutani–Ky fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astoronom. Phys., 13 (1955), 781–786.
    [27] W. V. Petryshyn, P. M. Fitzpatrick, A degree theory, fixed point theorems, and mapping theorems for multivalued noncompact maps, Trans. Amer. Math. Soc., 194 (1974), 1–25. https://doi.org/10.2307/1996791 doi: 10.2307/1996791
    [28] H. Covitz, S. B. Nadler, Multivalued contraction mappings in generalized metric spaces, Israel J. Math., 8 (1970), 5–11. https://doi.org/10.1007/BF02771543 doi: 10.1007/BF02771543
    [29] M. Kisielewicz, Differential inclusions and optimal control, Vol. 44, Springer Dordrecht, 1991.
    [30] C. Castaing, M. Valadier, Convex analysis and measurable multifunction, Lecture Notes in Mathematics, Springer, 1977.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(781) PDF downloads(41) Cited by(4)

Article outline

Figures and Tables

Figures(6)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog