Research article

Results on homoclinic solutions of a partial difference equation involving the mean curvature operator

  • Received: 25 November 2024 Revised: 20 February 2025 Accepted: 18 March 2025 Published: 21 March 2025
  • MSC : Primary: 39A14; Secondary: 34C37

  • By variational technique coupled with the mountain pass lemma and fountain theorem, we investigate a second-order partial difference equation involving the mean curvature operator in the present paper. We establish a number of criteria to guarantee the existence of multiple nontrivial homoclinic solutions. Our results generalize and improve some known ones. Additionally, two examples are provided to demonstrate applications of our obtained results.

    Citation: Yuhua Long, Sha Li. Results on homoclinic solutions of a partial difference equation involving the mean curvature operator[J]. AIMS Mathematics, 2025, 10(3): 6429-6447. doi: 10.3934/math.2025293

    Related Papers:

  • By variational technique coupled with the mountain pass lemma and fountain theorem, we investigate a second-order partial difference equation involving the mean curvature operator in the present paper. We establish a number of criteria to guarantee the existence of multiple nontrivial homoclinic solutions. Our results generalize and improve some known ones. Additionally, two examples are provided to demonstrate applications of our obtained results.



    加载中


    [1] Y. Zhou, H. Cao, Y. Xiao, Difference equations and their applications (Chinese), Beijing: Science Press, 2014.
    [2] J. S. Yu, J. Li, Discrete-time models for interactive wild and sterile mosquitoes with general time steps, Math. Biosci., 346 (2022), 108797. https://doi.org/10.1016/j.mbs.2022.108797 doi: 10.1016/j.mbs.2022.108797
    [3] Y. H. Long, X. F. Pang, Q. Q. Zhang, Codimension-one and codimension-two bifurcations of a discrete Leslie-Gower type predator-prey model, Discrete Contin. Dyn.-B, 30 (2025), 1357–1389. https://doi.org/10.3934/dcdsb.2024132 doi: 10.3934/dcdsb.2024132
    [4] J. S. Yu, Z. M. Guo, X. F. Zou, Periodic solutions of second order self-adjoint difference equations, J. Lond. Math. Soc., 71 (2005), 146–160. https://doi.org/10.1112/S0024610704005939 doi: 10.1112/S0024610704005939
    [5] E. Alvarez, S. Díaz, S. Rueda, $(N, \lambda)$-periodic solutions to abstract difference equations of convolution type, J. Math. Anal. Appl., 540 (2024), 128643. https://doi.org/10.1016/j.jmaa.2024.128643 doi: 10.1016/j.jmaa.2024.128643
    [6] Z. Zhou, J. X. Ling, Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with $\phi_{c}$-Laplacian, Appl. Math. Lett., 91 (2019), 28–34. https://doi.org/10.1016/j.aml.2018.11.016 doi: 10.1016/j.aml.2018.11.016
    [7] J. S. Yu, Z. M. Guo, On boundary value problems for a discrete generalized Emden-Fowler equation, J. Differ. Equations, 231 (2006), 18–31. https://doi.org/10.1016/j.jde.2006.08.011 doi: 10.1016/j.jde.2006.08.011
    [8] X. Tang, X. Lin, Homoclinic solutions for a class of second order discrete Hamiltonian systems, Acta. Math. Sin.-English Ser., 28 (2012), 609–622. https://doi.org/10.1007/s10114-012-9233-0 doi: 10.1007/s10114-012-9233-0
    [9] M. J. Ma, Z. M. Guo, Homoclinic orbits and subharmonics for nonlinear second order difference equations, Nonlinear Anal.-Theor., 67 (2007), 1737–1745. https://doi.org/10.1016/j.na.2006.08.014 doi: 10.1016/j.na.2006.08.014
    [10] J. H. Kuang, Z. M. Guo, Heteroclinic solutions for a class of $p$-Laplacian difference equations with a parameter, Appl. Math. Lett., 100 (2020), 106034. https://dx.doi.org/10.1016/j.aml.2019.106034 doi: 10.1016/j.aml.2019.106034
    [11] S. H. Wang, Z. Zhou, Heteroclinic solutions for a difference equation involving the mean curvature operator, Appl. Math. Lett., 147 (2024), 108827. https://doi.org/10.1016/j.aml.2023.108827 doi: 10.1016/j.aml.2023.108827
    [12] Z. M. Guo, J. S. Yu, Existence of periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China Ser. A-Math., 46 (2003), 506–515. https://doi.org/10.1007/BF02884022 doi: 10.1007/BF02884022
    [13] S. S. Cheng, Partial difference equations, London: CRC Press, 2003. https://doi.org/10.1201/9780367801052
    [14] J. C. Sun, J. W. Cao, C. Yang, Parallel preconditioners for large scale partial difference equation systems, J. Comput. Appl. Math., 226 (2009), 125–135. https://doi.org/10.1016/j.cam.2008.05.039 doi: 10.1016/j.cam.2008.05.039
    [15] S. T. Liu, Y. P. Zhang, Stability of stochastic 2-D systems, Appl. Math. Comput., 219 (2012), 197–212. https://doi.org/10.1016/j.amc.2012.05.066 doi: 10.1016/j.amc.2012.05.066
    [16] S. S. Haider, M. U. Rehman, T. Abdeljawad, A transformation method for delta partial difference equations on discrete time scale, Math. Probl. Eng., 2020 (2020), 3902931. https://doi.org/10.1155/2020/3902931 doi: 10.1155/2020/3902931
    [17] Y. H. Long, Nontrivial solutions of discrete Kirchhoff type problems via Morse theory, Adv. Nonlinear Anal., 11 (2022), 1352–1364. https://doi.org/10.1515/anona-2022-0251 doi: 10.1515/anona-2022-0251
    [18] Y. H. Long, Multiple results on nontrivial solutions of discrete Kirchhoff type problems, J. Appl. Math. Comput., 69 (2023), 1–17. https://doi.org/10.1007/s12190-022-01731-0 doi: 10.1007/s12190-022-01731-0
    [19] Y. H. Long, Least energy sign-changing solutions for discrete Kirchhoff-type problems, Appl. Math. Lett., 150 (2024), 108968. https://doi.org/10.1016/j.aml.2023.108968 doi: 10.1016/j.aml.2023.108968
    [20] Y. H. Long, On homoclinic solutions of nonlinear Laplacian partial difference equations with a parameter, Discrete Contin. Dyn.-S, 17 (2024), 2489–2510. https://doi.org/10.3934/dcdss.2024005 doi: 10.3934/dcdss.2024005
    [21] D. Li, Y. H. Long, Existence and nonexistence of periodic solutions for a class of fourth-order partial difference equations, J. Math., 2025 (2025), 2982321. https://doi.org/10.1155/jom/2982321 doi: 10.1155/jom/2982321
    [22] D. Li, Y. H. Long, On periodic solutions of second-order partial difference equations involving p-Laplacian, Commun. Anal. Mech., 17 (2025), 128–144. https://doi.org/10.3934/cam.2025006 doi: 10.3934/cam.2025006
    [23] Z. Tan, G. C. Wu, On the heat flow equation of surfaces of constant mean curvature in higher dimensions, Acta Math. Sci., 31 (2011), 1741–1748. https://doi.org/10.1016/S0252-9602(11)60358-5 doi: 10.1016/S0252-9602(11)60358-5
    [24] F. Obersnel, P. Omari, S. Rivetti, Existence, regularity and stability properties of periodic solutions of a capillarity equation in the presence of lower and upper solutions, Nonlinear Anal.-Real, 13 (2012), 2830–2852. https://doi.org/10.1016/j.nonrwa.2012.04.012 doi: 10.1016/j.nonrwa.2012.04.012
    [25] A. Kurganov, P. Rosenau, On reaction processes with saturating diffusion, Nonlinearity, 19 (2006), 171–193. https://doi.org/10.1088/0951-7715/19/1/009 doi: 10.1088/0951-7715/19/1/009
    [26] K. Ecker, G. Huisken, Mean curvature evolution of entire graphs, Ann. Math., 130 (1989), 453–471. https://doi.org/10.1016/10.2307/1971452 doi: 10.1016/10.2307/1971452
    [27] S. H. Wang, Z. Zhou, Three solutions for a partial discrete Dirichlet problem involving the mean curvature operator, Mathematics, 9 (2021), 1691. https://doi.org/10.3390/math9141691 doi: 10.3390/math9141691
    [28] P. Mei, Z. Zhou, Homoclinic solutions of discrete prescribed mean curvature equations with mixed nonlinearities, Appl. Math. Lett., 130 (2022), 108006. https://doi.org/10.1016/j.aml.2022.108006 doi: 10.1016/j.aml.2022.108006
    [29] G. P. Zhang, Breather solutions of the discrete nonlinear Schrödinger equations with unbounded potentials, J. Math. Phys., 50 (2009), 013505. https://doi.org/10.1063/1.3036182 doi: 10.1063/1.3036182
    [30] Z. Zhou, D. F. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Sci. China Math., 58 (2015), 781–790. https://doi.org/10.1007/s11425-014-4883-2 doi: 10.1007/s11425-014-4883-2
    [31] G. W. Chen, S. W. Ma, Z. Q. Wang, Standing waves for discrete Schrödinger equations in infinite lattices with saturable nonlinearities, J. Differ. Equations, 261 (2016), 3493–3518. https://doi.org/10.1016/j.jde.2016.05.030 doi: 10.1016/j.jde.2016.05.030
    [32] P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Providence: American Mathematical Society, 1986. https://doi.org/10.1090/cbms/065
    [33] W. M. Zou, Variant fountain theorems and their applications, Manuscripta Math., 104 (2001), 343–358. https://doi.org/10.1007/s002290170032 doi: 10.1007/s002290170032
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(916) PDF downloads(50) Cited by(1)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog