The primary objective of this paper was to delve into the exploration of numerical methods for solving forward and inverse problems related to heat conduction in one-dimensional multi-layered media. To address the non-differentiability at multilayer medium interfaces that prevents direct discretization, this paper employed the finite volume method to construct finite difference schemes. Compared with traditional difference methods, the proposed method improved accuracy by considering coefficient variations near interfaces. For the ill-posed initial value problem in inverse heat conduction of multilayer media, we transformed the inverse problem into an operator equation using the finite volume method for forward problems. The Landweber iterative regularization method combined with the Morozov discrepancy principle was then applied to obtain iterative sequences. Numerical simulations demonstrate the algorithm's superior accuracy and noise resistance compared with conventional methods through comparative studies and sensitivity analyses.
Citation: Yu Xu, Youjun Deng, Dong Wei. Numerical solution of forward and inverse problems of heat conduction in multi-layered media[J]. AIMS Mathematics, 2025, 10(3): 6144-6167. doi: 10.3934/math.2025280
The primary objective of this paper was to delve into the exploration of numerical methods for solving forward and inverse problems related to heat conduction in one-dimensional multi-layered media. To address the non-differentiability at multilayer medium interfaces that prevents direct discretization, this paper employed the finite volume method to construct finite difference schemes. Compared with traditional difference methods, the proposed method improved accuracy by considering coefficient variations near interfaces. For the ill-posed initial value problem in inverse heat conduction of multilayer media, we transformed the inverse problem into an operator equation using the finite volume method for forward problems. The Landweber iterative regularization method combined with the Morozov discrepancy principle was then applied to obtain iterative sequences. Numerical simulations demonstrate the algorithm's superior accuracy and noise resistance compared with conventional methods through comparative studies and sensitivity analyses.
| [1] |
Udayraj, P. Talukdar, A. Das, R. Alagirusamy, Heat and mass transfer through thermal protective clothing—A review, Int. J. Therm. Sci., 106 (2016), 32–56. https://doi.org/10.1016/j.ijthermalsci.2016.03.006 doi: 10.1016/j.ijthermalsci.2016.03.006
|
| [2] |
Z. Zhang, Y. Xiong, F Guo, Analysis of wellbore temperature distribution and influencing factors during drilling horizontal wells, J. Energy Resour. Technol., 140 (2018), 092901. https://doi.org/10.1115/1.4039744 doi: 10.1115/1.4039744
|
| [3] | P. M. Sutheesh, A. Chollackal, Thermal performance of multilayer insulation: A review, In: IOP conference series: Materials science and engineering, 396 (2018), 012061. https://doi.org/10.1088/1757-899X/396/1/012061 |
| [4] |
L. Kong, L. Zhu, Y. Deng, H. Liu, Electro-osmotic flow within multi-layer microfluidic structures and an algebraic framework for hydrodynamic cloaking and shielding, SIAM J. Appl. Math., 84 (2024), 2365–2392. https://doi.org/10.1137/24M1674078 doi: 10.1137/24M1674078
|
| [5] |
L. Kong, L. Zhu, Y. Deng, X. Fang, Enlargement of the localized resonant band gap by using multi-layer structures, J. Comput. Phys., 518 (2024), 113308. https://doi.org/10.1016/j.jcp.2024.113308 doi: 10.1016/j.jcp.2024.113308
|
| [6] |
Y. Deng, L. Kong, H. Liu, L. Zhu, Elastostatics within multi-layer metamaterial structures and an algebraic framework for polariton resonances, ESAIM, 58 (2024), 1413–1440. https://doi.org/10.1051/m2an/2024041 doi: 10.1051/m2an/2024041
|
| [7] |
Y. Deng, H. Liu, Y. Wang, Identifying active anomalies in a multi-layered medium by passive measurement in EIT, SIAM J. Appl. Math., 84 (2024), 1362–1384. https://doi.org/10.1137/23M1599458 doi: 10.1137/23M1599458
|
| [8] |
X. Fang, Y. Deng, On plasmon modes in multi-layer structures, Math. Method. Appl. Sci., 46 (2023), 18075–18095. https://doi.org/10.1002/mma.9546 doi: 10.1002/mma.9546
|
| [9] |
T. Liu, C. Zhao, Dynamic analyses of multilayered poroelastic media using the generalized transfer matrix method, Soil Dyn Earthq Eng, 48 (2013), 15–24. https://doi.org/10.1016/j.soildyn.2012.12.006 doi: 10.1016/j.soildyn.2012.12.006
|
| [10] |
L. B. Lesem, F. Greytok, F. Marotta, J. J. McKetta Jr, A method of calculating the distribution of temperature in flowing gas wells, Trans. AIME, 210 (1957), 169–176. https://doi.org/10.2118/767-G doi: 10.2118/767-G
|
| [11] |
L. Landweber, An iteration formula for Fredholm integral equations of the first kind, Am. J. Math., 73 (1951), 615–624. https://doi.org/10.2307/2372313 doi: 10.2307/2372313
|
| [12] |
A. A. Tikhonov, V. V. Glasko, Methods of determining the surface temperature of a body, Ussr Comput. Math. Math. Phys., 7 (1967), 267–273. https://doi.org/10.1016/0041-5553(67)90161-9 doi: 10.1016/0041-5553(67)90161-9
|
| [13] |
L. Elden, Approximations for a Cauchy problem for the heat equation, Inverse Probl., 3 (1987), 263. https://doi.org/10.1088/0266-5611/3/2/009 doi: 10.1088/0266-5611/3/2/009
|
| [14] |
L. Elden, Hyperbolic approximations for a Cauchy problem for the heat equation, Inverse Probl., 4 (1988), 59. https://doi.org/10.1088/0266-5611/4/1/008 doi: 10.1088/0266-5611/4/1/008
|
| [15] |
C. H. Huang, S. P. Wang, A three-dimensional inverse heat conduction problem in estimating surface heat flux by conjugate gradient method, Int. J. Heat Mass Tran., 42 (1999), 3387–3403. https://doi.org/10.1016/S0017-9310(99)00020-4 doi: 10.1016/S0017-9310(99)00020-4
|
| [16] |
J. M. Connors, J. S. Howell, W. J. Layton, Partitioned time stepping for a parabolic two domain problem, SIAM J Numer. Anal., 47 (2009), 3526–3549. https://doi.org/10.1137/080740891 doi: 10.1137/080740891
|
| [17] |
A. Shi, Z. Liu, X. Wang, Finite Analytic numerical method for the fluid flows and heat transfer in heterogeneous media (In Chinese), Chinese Quarterly of Mechanics, 40 (2019), 645–655. https://doi.org/10.15959/j.cnki.0254-0053.2019.04.01 doi: 10.15959/j.cnki.0254-0053.2019.04.01
|
| [18] |
Y. Wang, Y. Xu, D Xu, J. Fan, Optimization of multilayer clothing assemblies for thermal comfort in cold climate, Int. J. Therm. Sci., 179 (2022), 107586. https://doi.org/10.1016/j.ijthermalsci.2022.107586 doi: 10.1016/j.ijthermalsci.2022.107586
|
| [19] |
W. Wu, Y. Yang, H. Zheng, S. Wang, N. Zhang, Y. Wang, Investigation of the effective hydro-mechanical properties of soil-rock mixtures using the multiscale numerical manifold model, Comput. Geotech., 155 (2023), 105191. https://doi.org/10.1016/j.compgeo.2022.105191 doi: 10.1016/j.compgeo.2022.105191
|
| [20] |
Y. Yang, W. Wu, H. Zheng, S. Wang, L. Yang, An efficient monolithic multiscale numerical manifold model for fully coupled nonlinear saturated porous media, Comput. Method. Appl. M., 418 (2024), 116479. https://doi.org/10.1016/j.cma.2023.116479 doi: 10.1016/j.cma.2023.116479
|
| [21] |
Y. Hou, X. Zhang, S. Wang, A stabilized state-based peridynamic heat conduction model for interface thermal resistance problems, Appl. Math. Model., 137 (2025), 115504. https://doi.org/10.1016/j.apm.2024.05.001 doi: 10.1016/j.apm.2024.05.001
|
| [22] |
Y. Hou, X. Zhang, A bond-augmented stabilized method for numerical oscillations in non-ordinary state-based peridynamics, Eng. Fract. Mech., 307 (2024), 110276. https://doi.org/10.1016/j.engfracmech.2024.110276 doi: 10.1016/j.engfracmech.2024.110276
|
| [23] |
W. Wu, Y. Jiao, F. Zheng, J. Zou, S. Wang, NMM-based computational homogenization for nonlinear transient heat conduction in imperfectly bonded heterogeneous media, Int. Commun. Heat Mass, 162 (2025), 108599. https://doi.org/10.1016/j.icheatmasstransfer.2025.108599 doi: 10.1016/j.icheatmasstransfer.2025.108599
|
| [24] |
W. Wu, Y. Yang, Y. Jiao, S. Wang, Stability analysis of unsaturated slopes under rainfall and drainage using the vector-sum-based numerical manifold model, Comput. Geotech., 179 (2025), 106992. https://doi.org/10.1016/j.compgeo.2024.106992 doi: 10.1016/j.compgeo.2024.106992
|
| [25] |
M. T. Nair, Regularization of ill-posed operator equations: An overview, J. Anal., 29 (2021), 519–541. https://doi.org/10.1007/s41478-020-00263-9 doi: 10.1007/s41478-020-00263-9
|
| [26] |
O. Scherzer, The use of Morozov's discrepancy principle for Tikhonov regularization for solving nonlinear ill-posed problems. Computing, 51 (1993), 45–60. https://doi.org/10.1007/BF02243828 doi: 10.1007/BF02243828
|
| [27] | R. Molero, M. Martínez-Pérez, C. Herrero-Martín, J. Reventós-Presmanes, I. Roca-Luque, L. Mont, et al., Improving electrocardiographic imaging solutions: A comprehensive study on regularization parameter selection in L-curve optimization in the Atria. Comput. Biol. Med., 182 (2024), 109141. https://doi.org/10.1016/j.compbiomed.2024.109141 |
| [28] |
L. Chen, Y. Li, F. Shen, R. Xue, General temperature computational method of linear heat conduction multilayer cylinder, J. Iron Steel Res. Int., 17 (2010), 33–37. https://doi.org/10.1016/S1006-706X(10)60041-6 doi: 10.1016/S1006-706X(10)60041-6
|
| [29] |
S. Xie, G. Qu, W. Li, A preconditioned Landweber iteration-based Bundle adjustment for large-scale 3D reconstruction, Commun. Nonlinear Sci., 130 (2023), 107770. https://doi.org/10.1016/j.cnsns.2023.107770 doi: 10.1016/j.cnsns.2023.107770
|
| [30] |
F. de Monte, An analytic approach to the unsteady heat conduction processes in one-dimensional composite media, Int. J. Heat Mass Tran., 45 (2002), 1333–1343. https://doi.org/10.1016/S0017-9310(01)00226-5 doi: 10.1016/S0017-9310(01)00226-5
|