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Abstract: The primary objective of this paper was to delve into the exploration of numerical 

methods for solving forward and inverse problems related to heat conduction in one-dimensional 

multi-layered media. To address the non-differentiability at multilayer medium interfaces that 

prevents direct discretization, this paper employed the finite volume method to construct finite 

difference schemes. Compared with traditional difference methods, the proposed method improved 

accuracy by considering coefficient variations near interfaces. For the ill-posed initial value problem 

in inverse heat conduction of multilayer media, we transformed the inverse problem into an operator 

equation using the finite volume method for forward problems. The Landweber iterative 

regularization method combined with the Morozov discrepancy principle was then applied to obtain 

iterative sequences. Numerical simulations demonstrate the algorithm's superior accuracy and noise 

resistance compared with conventional methods through comparative studies and sensitivity 

analyses. 

Keywords: heat conduction; multi-layered media; forward and inverse problems; finite difference 

method; iterative regularization 

Mathematics Subject Classification: 65M08, 65M32 

 

1. Introduction 

The issue of heat conduction in multi-layered media has garnered significant attention in both 

industrial applications and scientific research, emerging as a crucial and challenging area of study. 
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This is evident in various contexts such as heat transfer dynamics of multi-layer protective clothing [1], 

temperature fluctuations within wellbores and geological formations comprised of multiple layers [2], 

and the insulation properties of multi-layered materials used in low-temperature containers [3]. These 

real-world examples underscore the complexity and practical relevance of accurately modeling heat 

conduction in multi-layered media. The mathematical analysis of multi-layered media has also 

undergone a noteworthy breakthrough (i.e., [3–9]). 

Ever since Lessem proposed the problem of heat conduction for porous media in 1957, 

extensive research has been conducted by scholars on this particular issue [10]. In 1951, Landweber 

proposed the Landweber iterative regularization method for solving linear problems [11]. In 1967, 

Tikhonov proposed the Tikhonov variational regularization method based on the principle of 

variation [12], providing substantial means for solving heat conduction inversion problems. In 1987, 

Elden investigated the sideways parabolic equations in multi-layered media [13,14]. Huang studied 

the conjugate gradient method to solve the three-dimensional transient inverse heat conduction 

problem in 1999 [15]. In 2009, Connors J proposed partitioned time stepping for a parabolic two 

domain problem [16]. In 2019, Shi developed a finite analytical method for heat transfer in 

heterogeneous media [17]. In 2022, Wang presented a theoretical study on the optimization of key 

material parameters of multilayer clothing assemblies [18]. In 2023, Wu proposed a homogenization 

model for modeling 3D heterogeneous porous elastic media [19,20]. Recently, Hou proposed a stable 

state–based ring dynamic heat transfer model to investigate the interfacial thermal resistance of 

materials with complex heat transfer constitutive relations [21,22]. At the same time, Wu proposed a 

homogenization model based on the numerical manifold method for nonlinear transient heat 

conduction in heterogeneous media [23,24]. The numerical manifold method has high computational 

accuracy and is suitable for complex interface conditions, showing great potential. However, it 

requires a large amount of computation compared with the finite volume method, and the noise 

resistance when applied to inversion is still to be verified. 

In practical problems, the multi-layered medium heat conduction problem cannot be solved 

analytically, and the calculation volume may escalate significantly as the number of layers increases. 

The traditional difference schemes usually replace the coefficient of the interface with the arithmetic 

average or harmonic average of the coefficient near the interface; however, they ignore the variation 

of the coefficient near the interface in heterogeneous media and fail to fully ensure the continuity of 

heat flux. Traditional numerical methods also present difficulties in solving the inverse problem of 

heat conduction in multi-layered media. In this paper, we will mainly provide numerical solution 

methods for the forward and inverse problems of multi-layered non-uniform medium heat 

conduction and verify the effectiveness and feasibility of the algorithms. The structure of this paper 

is organized as follows: In Section 3, we present our finite volume method–based difference scheme 

for the forward problem of heat conduction in multi-layered media. Also, we apply the forward 

problem's difference scheme to construct the operator equation for the inverse heat conduction 

problem in multi-layered media. Then, we solve this equation using the Landweber iterative 

regularization method. In Section 4, we demonstrate the accuracy and effectiveness of our methods 

through numerical simulations. The conclusions are given in Section 5. 

This method avoids direct discretization of the interface. Instead, it constructs the scheme by 

using the integrability of differential equations and continuity conditions of heat flux. Thus, the 

method overcomes the limitation of traditional difference methods in handling non-differentiable 

interfaces, takes coefficient variations into account, and ensures more accurate continuity of heat flux. 
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Numerical experiments demonstrate that this method achieves higher accuracy while maintaining 

computational efficiency compared to traditional difference methods. 

2. Heat conduction equations in multi-layered media 

Consider the one-dimensional multi-layer heat conduction equation in a medium, where the 

spatial axis is x , the time variable is t , and the time interval is  0,T . In a rod composed of 

multiple layers of medium, let 
0 1 10 n nx x x x l−=     =L , where the length of the rod is l , and 

the interval of the i -th layer of medium is 1,i ix x−   , 1,2, ,i n= L , as shown in Figure 1. 

 

Figure 1. Schematic diagram of multi-layered medium heat conduction. 

Let the temperature function of the rod be ( ),u x t , where the initial temperature at time 0t =  

is ( )f x , the boundary temperature at 0x =  is ( )t , and the boundary temperature at x l=  is 

( )t . Let us assume that the physical parameters in the medium are only dependent on spatial 

parameters x  and are continuous functions. Let the temperature function, thermal conductivity, 

density, and specific heat capacity of the i -th layer of the medium be denoted by ( )iu x t， , ( )ik x , 

( )i x , and ( )ic x , respectively. Let the heat source intensity of the medium be ( ),iq x t . Using the 

first law of thermodynamics and Fourier's law, the temperature function ( ),iu x t  satisfies the 

following equation: 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

1, ,

,0
, 1,2, ,

0,

,

0 ,0

i i
i i i i i iu u

c x x k x q x t x x x
t x x

u x f x
i n

u t t

u l t t

x l t T







−
    

= +    
   

 =
=

=
 =


   

L ,  (2.1) 

At the interface between media, there are the following connection conditions: 

1

1

1
,0 , 1,2, , 1

i i

i i

i i

x x x x

i i

i i

x x x x

u u

t T i nu u
k k

x x

+

= =

+

+

= =

 =


  = −  
− = −

 

L .    (2.2) 
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3. Forward and inverse problems in multi-layered medium heat conduction 

3.1. Numerical solution of the forward problem 

Consider Eqs (2.1) and (2.2) as follows: 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

1, ,

,0
, 1,2, ,

0,

,

0 ,0

i i
i i i i i iu u

c x x k x q x t x x x
t x x

u x f x
i n

u t t

u l t t

x l t T







−
    

= +    
   

 =
=

=
 =


   

L , 

and 

1

1

1
,0 , 1,2, , 1

i i

i i

i i

x x x x

i i

i i

x x x x

u u

t T i nu u
k k

x x

+

= =

+

+

= =

 =


  = −  
− = −

 

L , 

where ( ) ( ) ( ), ,i i ic x x k x  are continuous functions on ( )1,i ix x−
. We now solve for the temperature 

function ( ),u x t . 

For the interior of the i -th medium, the spatial interval 
1,i ix x−    is uniformly divided into a 

total of 
iJ  parts, and the nodes are denoted as 1

0 1 1i i

i i i i i i

J J
x x x x x x−

−
=     =L , with the 

space-step size 
1i i

i

i

x x
h

J

− −
= . The approximate value of ( ),iu x t  at node i

jx x=  is taken as ( )i

ju t , 

and the spatial interval s is then dual-meshed, with the nodes denoted as 
1

1

2
2

i i

j ji

j

x x
x

−

−

+
= . 

Use the finite volume method to construct a difference scheme: for , 1,2, , 1i

jx x j J= = −L , 

the first equation in (2.1) is integrated over the interval 
1 1

-
2 2

,i i

j j
x x

+

 
 
 

 to give the following: 

( ) ( ) ( ) ( )
1

1 1
2

2 2

1 1

2 1 2

2

,

i
i i

j
j j

i i

ij j

j

x
i ix x

i i i i

x x
x

u u
c x x dx k x q x t dx

t x


+
+ +

− −

−

 
= +

   ,     (3.1) 

Let us denote ( ) ( ) ( ), ,i i i i i i

j j jc x x k x  as , ,i i i

j j jc k  and use the rectangle formula to obtain the 

following: 

( ) ( ) ( ) ( ) 1

2

1

2

1 1

1 1

2 2

i

j

i

j

i i i i i x
j j j j ji i i i i i

j j i i xj j

u u t u t u t u t
h c k k q dx

t h h


+

−

+ −

+ −

 − −
= − +

  ,    (3.2) 
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Divide the time interval  0,T  into K  parts and let 
0 1 10 K Kt t t t T−=     =L  be the 

time node, 
1k k kt t −= −  the time-step size, and 

,

i

j ku  the approximate value of the function ( ),iu x t  

at the node ( ),i

j kx t . Denote ( )
1

2

1

2

,

1
,

i

j

i

j

x
i i

j k ki x
q q x t dx

h

+

−

=  . Use the trapezoidal rule and discretize the 

time variable as follows: 

( )

, 1 ,

1

1, 1 , 1 , 1 1, 1

1 1 , 1

2 2

1, , , 1,

1 1 ,

2 2

1

i i

j k j ki i i

j j

k

i i i i

j k j k j k j ki i i i

j ki i
j j

i i i i

j k j k j k j ki i i i

j ki i
j j

u u
h c

u u u u
k k h q

h h

u u u u
k k h q

h h








+

+

+ + + + − +

+
+ −

+ −

+ −

−

 − −
= − +  

 

 − −
+ − − +  

 

,     (3.3) 

where  0,1  . 

For the interface between media, let i

ku  be the approximate value of the function ( ),iu x t  at 

the node ( ),i

kx t . Denote ( )
1

2

,

2
,

i
iJ

i i

iJ

x
i i

kiJ k x
q q x t dx

h −

=  , ( )
1

2

1
0

1 1

0, 1

2
,

i

i

x
i i

k ki x
q q x t dx

h
+

+ +

+
=  . The finite volume 

method and the connection condition (2.2) can be used to obtain 

( )

1 1 1

0 0 1

1

1 1
11, 1 1 1, 11 1

1 1 0, 11 , 1

2 2

1 1
1, 1,1 1

1 1 0,1 ,

2 2

2

2 2

1
2 2

i i

i

i
i

i

i
i

i i i i i i i i

J J k k

k

i ii i i i
kk k J ki i i i

ki i J kJ

i ii i i i
kk k J ki i i i

ki i J kJ

h c h c u u

u uu u h h
k k q q

h h

u uu u h h
k k q q

h h

 







+ + +

+

+

+ +
++ + − ++ +

++ +−

+ +
−+ +

+
−

+ −

 −−
= − + + 

 
 

 −−
+ − − + +






 


,    (3.4) 

We can transform (3.3) and (3.4) to obtain difference schemes: 

( ) ( ) ( ) ( )

( )

1 1 1 1

2 2 2 2
1, 1 , 1 , 1

1

1 1 1 1

2 2 2 2
1, , ,

1

, , 1

1 1 1 1

1

i i i i

i i i
j j j j

j ji i i

j k j k j ki i i i

k

i i i i

i i i
j j j j

j ji i i

j k j k j ki i i i

k

i i i i

j k j k

k k k k
h c

u u u
h h h h

k k k k
h c

u u u
h h h h

h q h q

   




   




 

+ − + −

+ + + +

+

+ − + −

+

+

+

 
 

− + + + − = 
 
 

 − − − −
 

+ − − + 
 
 

+ − +

, (3.5) 

and 



6149 

AIMS Mathematics  Volume 10, Issue 3, 6144–6167. 

( ) ( ) ( )

1 1

1 1 11 1 1 1

0 012 2 2 2
1, 1 11 1 1, 1

1

1 1

1 1 11 1 1

0 012 2 2
1,1 1

1

2

1 1 1

2

i i
i i

i

i
i i

i i i i

i i i i i i
J J

i i iJ J
k ki i i i J k

k

i i i

i i i i i i
J

i J J
ki i i

k

k k k k
h c h c

u u u
h h h h

k k k
h c h c

u
h h h

   
 



  
 



+ +

+ + +
− −

+

+ ++ + − +
+

+ +

+ + +
−

+

+ +

+

 
+ 

− + + + − 
 
 

 − − −
+ 

= + − − 
 
 

( )
( ) ( )1 1 1

1 12
0, 0, 11, , , 1

1
1 1

2 2 2 2

i

i i i

i

k

i

i i i iJ
i i i i i

k ki J k J k J k

u

k
h h h h

u q q q q
h


 

 
+ +−

+ +

+− +

−
− −

+ + + + +

,  (3.6) 

Note 1

1 1 1 1 2

1, 2, 1,1, 1,
, , , , , , , n

n

k k k k kJ k J k
U u u u u u u

− −
 =
 

L L , 
1

1
n

i

i

J J
=

= −  and transform (3.5) and (3.6) into 

the following form: 

1k k kAU BU C+ = + ,         (3.7) 

where A , B  is the J J  matrix, and C  is the 1J   vector. 

For the initial conditions and boundary conditions in (2.1), we have 

( )

( )

( )

,0

1

0,

,n

i i

j j

k k

n

kJ k

u f x

u t

u t





 =


=


=

,         (3.8) 

By iteratively applying (3.7) and (3.8) in time layer 0,1, , 1k K= −L , we can obtain ,

i

j ku . 

Theorem 3.1. When 
1 1

0, ,1
2 2


   

   
   

U , the local truncation error of (3.5) is ( )( )2
iO h + , and the 

local truncation error of (3.6) is ( )1i iO h h ++ + . When 
1

2
 = , the local truncation error of (3.5) is 

( )( )2
2iO h + , and the local truncation error of (3.6) is ( )1 2i iO h h ++ + . 

Proof. Let us first consider the local truncation error of (3.5), and by using Taylor expansion on u  

with respect to x , we can obtain 

( ) ( )( )

, 1 ,

1

1 1 1 1
, 1 , 1 , ,

2 2 2 2

2

, , 1

1

1

i i

j k j ki i

j j

k

i i i i
i i i i

j k j k j k j k

i i i

j k j k

u u
c

u u u u
k k k k

h x x h x x

q q O h




 

 

+

+

+ + − + + −

+

−

   
         −     = − − −                    
   

+ − + +

, (3.9) 

Using Taylor's expansion on 
u

k
x




 with respect to x  gives: 

https://fanyi.so.com/#iteratively
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( ) ( ) ( )( )

, 1 ,

1

2

, , 1

, 1 ,

1
1 1

2

i i

j k j ki i i

j j

k

i i
i i i i i

j k j k

j k j k

u u
h c

u u
k k q q O h

x x




   

+

+

+

+

−

     
=  + −  + − + +    

      

, (3.10) 

Using Taylor's expansion on u , 
u

k
x x

  
 

  
, q  with respect to t , we can obtain 

( )( ) ( )

1
,1 1

2, ,
2 2

2
2

1 1
, ,

2 2

1 2

2

i i
i i i i

j k
j k j k

i i
i i

j k j k

u u
c k q

t x x

u q
k O h O

t x x t




 

+
+ +

+ +

     
= +   

     

 
   −    + + + +          

 

, (3.11) 

Considering the differential equation within the medium, we have 

1
,

1 1 2, ,
2 2

i i
i i i i

j k
j k j k

u u
c k q

t x x


+
+ +

   
= + 

   
,      (3.12) 

Compare (3.12) with (3.11) to obtain the local truncation error of the difference scheme (3.5) 

when 
1 1

0, ,1
2 2


   

   
   

U : 

( )( )2

, 1

i i

j kR O h+ = + .        (3.13) 

And when 
1

2
 = , the local truncation error is: 

( )( )2
2

, 1

i i

j kR O h+ = + .        (3.14) 

Then, consider the local truncation error of (3.6), and by using Taylor expansion on u  with 

respect to x , we can obtain 

( )

1 1 1

0 0 1

1

1 1
1 1

1 1 1 1
, 1 , 1 , 1 , 1

2 2 2 2

1
1

0, 1, 1 ,

2

1

1

2 2 2 2 2

i i

i i

i i

i i i i i i i i

J J k k

k

i i i i
i i i i

k J k k J k

i i i
i i

kJ k J

h c h c u u

u u u u
k k k k

x x x x

h h h
q q q

 



 

 

+ + +

+

+

+ +
+ +

+ − + + − +

+
+

++

+ −

   
             = − + − −                    
   

  −
+ + + 

 
( ) ( )( )

1
3 3

1 1

0,
2

i
i i i i

kk

h
q O h h

+
+ + 

+ + + 
 

, (3.15) 
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Using Taylor's expansion on 
u

k
x




 with respect to x  gives: 

( )

1 1 1

0 0 1

1

1
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0, 1 , 1

1
1 1

0, ,

2 1
2

1 1

2
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1

2
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i
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h c h c u u

u u
h k h k

x x x x

u u
h k h k

x x x x

u
h k

x x

 









+ + +

+

+

+
+ +

+ +

+
+ +

+
+ +

+ −

       
= +    

        

    −    
+ +    

        

  
+  

  
( )

( ) ( )

( ) ( )( )

2
2

2

1 , 1

2 1 2
2 2

1 1

2 2

0, ,

1 1
3 3

1 1 1

0, 1 0,, 1 ,

1

6

1

2 2 2 2 2 2

i

i

i i

i
i i

J k

i i
i i i i

k J k

i i i i
i i i i i i

k kJ k J k

u
h k

x x

u u
h k h k

x x x x

h h h h
q q q q O h h



 

+ +

+
+ +

+ +
+ + +

++

   
−  

    

    −    
+ −    

        

   −
+ + + + + +   

   

,  (3.16) 

Using Taylor's expansion on u , 
u

k
x x

  
 

  
, q  with respect to t , we can obtain 

( ) ( )

1 1
1 1 1 1 1

1 1 1 1
, 0, 0, ,

2 2 2 2

2 1 2
2 2

1 1 1 1

1 1 2 2
, 0,

2 2 0, 1
3

i i

i

i i i i
i i i i i i i i i i

J k k k J k

i i
i i i i i i i i

J k k
k

u u u u
h c h c h k h k

t t x x x x

u u
h q h q h k h k

x x x x

 



+ +
+ + + + +

+ + + +

+
+ + + +

+ +
+

            
+ = +       

            

       
+ + + −    

      

( ) ( )

( ) ( )

, 1

2 1 2
2 2

1 1

2 2

0, ,

1 1
1 1

1 1
0, ,

2 2

3 3
1

1

3

1 2

2

i

i

i

J k

i i
i i i i

k J k

i i i i
i i i i

k J k

i i

u u
h k h k

x x x x

u q u q
h k h k

t x x t t x x t

O h h






+

+
+ +

+ +
+ +

+ +

+

 
 

  

    −    
+ −    

        

 
      −       + + + +                      

+ + ( )( )1 2i ih h ++ +

, (3.17) 

Considering the differential equation at the interface between media, we have 

1 1
1 1

1 1
1 1

, 0,
2 2

1 1 1
1 1

1 11 1 1 1
, 0,1 1

2 2, 0,
2 2

i

i

i

i i i i
i i i i

i i i i

J k k

i i i i i i
i i i i

i i i i i i i i
J k k

J k k

h u h u
c c

h h t h h t

h u h u h h
k k q q

h h x x h h x x h h h h

 
+ +

+ +

+ +

+ +

+ + +
+ +

+ + + +
+ +

+ +

    
+   

+  +    

      
= + + +   

+   +   + +   

, (3.18) 
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Compare (3.17) with (3.18) to obtain the local truncation error of the difference scheme (3.5) 

when 
1 1

0, ,1
2 2


   

   
   

U : 

( )1

1

i i i

kR O h h +

+ = + + ,        (3.19) 

And when 
1

2
 = , the local truncation error is: 

( )1 2

1

i i i

kR O h h +

+ = + + ,         (3.20) 

Therefore, Theorem 3.1 is proved. □ 

Theorem 3.2. When 
1

,1
2


 

 
 

, the difference schemes (3.5) and (3.6) satisfy stability conditions. 

Proof. Using the freezing coefficient method, we freeze the variable coefficients 1,i i

j jk k +  into 

constant coefficients 1,i ik k + , rewrite the variable coefficient formulas (3.5) and (3.6) into their 

corresponding constant coefficient difference schemes, and then use the Fourier method to substitute 

,

i iajh

j k ku v e=  and 
,

i

i

i i iaJ h

k kJ k
u u v e= =  to obtain: 

( ) ( )

( ) ( ) ( ) ( ) ( )

( )

1 1

1 1 1

1

1 1

1

, , 1

2

1 2 1

 

1

1

i i i ii i
ia j h j j j ia j hiajh

k k ki i i

k

i i ii i i

ia j h j j ia j hiajh

k k ki i i

k

i i i i

j k j k

h c kk k
v e v e v e

h h h

h ck k k
v e v e v e

h h h

h q h q

  



  



 

+ −

+ + +

+

+ −

+

+

 
− + + − =  

 

 − − −
+ − +  
 

+ − +

,   (3.21) 

and 

( ) ( )

( ) ( ) ( ) ( )

( )

1 1 11 1
1 10 0

1 1 11 1

1

1 1 11 1
1 0 0

1 1

1

2

1 1 1

2

1

i i
ii i

i
ii i

i i i i i ii i i i
ia J h ia J hiaJ hJ J

k k ki i i i

k

i i i i i ii i i
ia J h iaJ hJ J

k ki i i

k

i

h c h ck k k k
v e v e v e

h h h h

h c h ck k k
v e v e

h h h

k

    



   





+ + ++ +
+ −

+ + ++ +

+

+ + ++ +
+

+ +

+

 +
− + + + −  

 

 +− − −
= + − −  

 

−
+

( ) ( ) ( ) 1 1
1 1 1

0, 0, 1, , 1

1 1

2 2 2 2

i

i i

i i i i
ia J h i i i i

k k ki J k J k

h h h h
v e q q q q

h

 
 

+ +
− + +

++

− −
+ + + +

, (3.22) 

The growth factor is: 

( )

( )
( )

( )

( )
( )

1

2

1
1

2

2 1 1 cos

,

2 1 cos

i i ik
j j

i

i i ik
j j

i

c k h
h

G ph

c k h
h


  




  

+

+

− − −

=

+ −

,     (3.23) 

And 
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( )
( ) ( ) ( )

( )

1 1 1 1 1
0 0

1 1

1

2 1 1 1 1 1
0 0

1 1

1

1 1 cos 1 sin
2

,

1 cos sin
2

i i

i i

i i i i i i i i i i

J J

i i i i

k

i i i i i i i i i i

J J

i i i i

k

h c h c k k k k
h i h

h h h h
G ph

h c h c k k k k
h i h

h h h h

 
   




 
   



+ + + + +

+ +

+

+ + + + +

+ +

+

+    
− − + − + − −   

   =
+    

+ + − − −   
   

,(3.24) 

Obviously, when 
1

,1
2


 

 
 

, we always have: 

( )1 1G ph  ， ,         (3.25) 

and 

( )2 1G ph  ， ,         (3.26) 

Therefore, the difference schemes (3.5) and (3.6) are proved to be stable.□ 

However, the schemes may become unstable when 
1

0,
2


 

 
 

, but we can stabilize them by 

restricting the mesh ratio. 

Theorem 3.3. When 
1

0,
2


 

 
 

, if the maximum mesh ratio 

( )
2

max k

i
r

h


=  always has 

( ) ( )
( ) ( )2 1 2

i i

i

c x x
r

k x






−
, the difference schemes (3.5) and (3.6) satisfy stability conditions. 

Proof. When 
1

0,
2


 

 
 

, if 
( ) ( )

( ) ( )2 1 2

i i

i

c x x
r

k x






−
, obviously, we always have: 

( )1 1G ph  ， .         (3.27) 

We only need to prove ( )2 1G ph  ， , namely 

( ) ( ) ( )

( )

2 21 1 1 1 1
0 0

1 1

1

2
1 1 1 1 1

0 0

1 1

1

1 1 cos 1 sin
2

1 cos sin
2

i i

i i

i i i i i i i i i i

J J

i i i i

k

i i i i i i i i i i

J J

i i i i

k

h c h c k k k k
h h

h h h h

h c h c k k k k
h h

h h h h

 
   



 
   



+ + + + +

+ +

+

+ + + + +

+ +

+

 +     
− − + − + − −        

     

 +    
 + + − + −     

    

2

 
  
 

, (3.28) 

It is equivalent to prove 

( )
2 21 1 1 1 1 1

0 0

1 1 1

1

2 1 2 2 cos 0
i i

i i i i i i i i i i i i

J J

i i i i i i

k

h c h c k k k k k k
h

h h h h h h

 
 



+ + + + + +

+ + +

+

 +        
 + − − + − +        
         

, (3.29) 
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And we have 

( )

( )

2 21 1 1 1 1 1
0 0

1 1 1

1

21 1 1 1 1
0 0

1 1

1

1

1

2 1 2 2 cos

2 1 2

i i

i i

i i i i i i i i i i i i

J J

i i i i i i

k

i i i i i i i i i i

J J

i i i i

k

i

i

h c h c k k k k k k
h

h h h h h h

h c h c k k k k

h h h h

k

h

 
 



 




+ + + + + +

+ + +

+

+ + + + +

+ +

+

+

+

 +        
 + − − + − +       
         

+    
 + − − +   

   

= +
( ) ( ) ( ) ( )

2 2
1 1 1 1 1

0 0

1 1 1

1 1 0 0

2 1 2 2 1 2
0

i i

i i

i ii i ii i i i ii

J J

i i i i i i i

k kJ J

h hk ck k k ck

h c h c h

  

   

+ + + + +

+ + +

+ +

    − −     − + −       
    

, (3.30) 

Therefore, ( )2 1G ph  ， . 

It implies that the difference schemes (3.5) and (3.6) are stable.□ 

When 
1

0,
2


 

 
 

, the stability condition can be optimized by decreasing the time step 
k  or 

increasing the space step 
ih . Because of its unconditional stability and higher convergence order, 

1

2
 =  is usually taken in calculations. 

3.2. Numerical solution of the forward problem 

Consider equations (2.1) and (2.2) as follows: 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

1,

,0
, 1, 2, ,

0,

,

0 , 0

i i
i i i i i iu u

c x x k x q x x x x
t x x

u x f x
i n

u t t

u l t t

x l t T







−
    

= +    
   

 =
=

=
 =


   

L , 

and 

1

1

1
0 1 2 1

i i

i i

i i

x x x x

i i

i i

x x x x

u u

t T i nu u
k k

x x

+

= =

+

+

= =

 =


  = −  
− = −

 

L， ， ，， ， , 

where ( ) ( ) ( ), ,i i ic x x k x  are continuous functions on ( )1,i ix x−
. 

Suppose that the temperature distribution at time 
0t  has been measured as ( )0

iu x t， , while the 

initial temperature distribution ( )f x  is an unknown function. We now solve for the temperature 

function ( ),u x t . 
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Reconstructing the temperature function ( ),iu x t  only requires solving the initial temperature 

distribution ( )f x , similar to the analysis for the forward problem. We can obtain the difference 

schemes (3.5) and (3.6), and the matrix form (3.7) is as follows: 

1k k kAU BU C+ = + , 

By iteratively applying (3.7) in the time layer 0,1, , 1k K= −L , we can obtain 

( ) ( )
1

1
1 1 1

0

0

K
K K k

K k

k

U A B U A B A C
−

− −
− − −

=

= + ,      (3.31) 

Note ( )1
K

A B T− = , ( )
1

1
1 1

0

K
K k

K k

k

U A B A C F
−

− −
− −

=

− = , then we have 

0TU F= .          (3.32) 

The inverse heat conduction problem often has strong ill-posedness, and the Landweber 

iterative regularization method is a classic method for solving ill-posed problems. 

Consider solving the operator equation, namely: 

Tx y= ,          (3.33) 

where x X , y Y , :T X Y→  is a linear operator on a Banach space. In the solution of the heat 

conduction inverse problem, the operator equation (3.33) is often an ill-posed problem, meaning that 

there is no solution, the solution is not unique, or the solution is unstable. It is usually transformed 

into finding the solution to the least squares problem, namely: 

2† arg min
Yx X

x Tx y


= − ,        (3.34) 

where arg min ( )
x X

f x


 is the value of the independent variable x  that corresponds to the minimum 

value of ( )f x . 

For ill-posed problems, the least squares solution is often unstable, and in practical problems, 

y  is often y  with disturbances, so the least squares solution has a large error from the true 

solution. This instability is caused by inverting the matrix T , so the Landweber iterative 

regularization method is used to avoid inverting the matrix T and transform the instability problem 

into a stable problem. 

Proposition 3.4 [25]. If ( )y R T , then 
†x  is a solution to the least squares problem c with the 

necessary and sufficient condition †T Tx T y = , where T 
 is the adjoint operator of T . 

To solve the solution of †T Tx T y = , it is first transformed into the following form: 
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( )

( )

† † †

†

x x T Tx T y

I T T x T y







 

 

 

= − −

= − +
,        (3.35) 

where 

( )

2

,

1
0

L Y X
T

   is the relaxation factor. 

Use the fixed-point iteration method to solve for (3.35), as follows: 

( )0 1: 0, :m mx x I T T x T y    

−= = − + ,      (3.36) 

where the relaxation factor   is often taken to be the iteration step size. 

Using mathematical induction, we have 

( )
1

0

m
n

δ

m

n

x I T T T y 
−

 

=

= − .        (3.37) 

By the Banach fixed-point theorem, if ( )y R T  , the iteration will diverge, and data y  

contain noise level δ  interference, so the iteration point approaches the true solution at the 

beginning of the iteration, but the distance between the iteration point and the true solution will 

increase after a long iteration. Therefore, a stopping criterion must be adopted to stop the iteration at 

an appropriate time. The Morozov discrepancy principle is often used as it can prevent overfitting of 

noisy data while maintaining solution stability, effectively approximating the true solution; it only 

needs to know the noise level compared to a prior criterion. 

The Morozov discrepancy principle [26]. For an iterative exponent ( ),m m y = , for given 

numbers , δδ y , and a number 2τ   independent of , δδ y , the iteration will stop when 

1m mY Y
Tx y Tx y    −

−   − . 

We now consider convergence characteristics under the source condition †

,v fx X  for 

, 0v f  . 

Theorem 3.5. If 2m Y
Tx y  −  , then † †

1m mX X
x x x x 

+ −  − . 

Proof. Note †,m my Tx y Tx   = − = , we have 

( )( )

( ) ( )

2 2
† †

1

2 2
† 2

2 2 2 2
†

2

m m mX X

m m m mX XY

m m m m mX Y X YY

x x x x T

x x T x x T

x x y y T

  

   

     

 

   

       



+

+ 



− = − +

= − + − +

 = − + − + + −
  

,  (3.38) 

In particular 

( ) ( ) ( )
2 2

2 2 0m m m m m mY Y Y Y YY
y y Tx y                 − +  − = − − 

  
,  (3.39) 

and 

( )

2 2 2 2
*

,
0m m m mX Y L Y X Y Y

T T         −  −  .    (3.40) 
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Then we have 
2 2

† †

1m mX X
x x x x 

+ −  − , namely † †

1m mX X
x x x x 

+ −  − .□ 

Theorem 3.6. The Morozov discrepancy principle terminates the Landweber iteration in step 
2

2 1vf
m C



+
 

 
  

 
 with some 0C  . 

Proof. Using the Morozov discrepancy principle, we have 

( )† † †

1 1 1m m mY Y
Tx y Tx Tx Tx y T x x       − − −

 − = − + −  − + ,   (3.41) 

In particular 

( ) ( ) ( )

( ) ( )
( )

( )

( )

† †

1 1 1 1

1

, 0

1

2

m m m mX

m
m i

L Y X i

v

T x x T x x T x x

I T T T T T f I I T T y y

m f

 





  






   − − − −

−
  

=

−
− −



−  − + −

= − + − − −

 +

 ,   (3.42) 

Hence 

( ) ( )
1 1

2 2 2
v v

m f  
− − − −

  − ,        (3.43) 

This implies that 
2

2 1vf
m C



+
 

 
  

 
,         (3.44) 

with some 0C  .□ 

Theorem 3.7. ( )( )† 1mx x m m
   
−

−  + + , 
21

† 2 12 1

v

vv
m

x x C f 
++−   with some 0C  . 

Proof. Using †

,v fx X , we have  

( )
1

0

m
i

m m

i

x x I T T T y y m    
−

 

=

− = − −  ,     (3.45) 

and 

( ) ( )
( )

( )( )†

,

1
m

m X
L Y X

x x I T T T T f m


 
− − = −  + .   (3.46) 

So, we have 

( )( )† † 1m m m mx x x x x x m m
    
−

−  − + −  + +     (3.47) 

By (3.44) and (3.47), we have 

( )( )
21

† 2 12 11
v

vv
m

x x m m C f


    

−
  ++−  + +  ,    (3.48) 

with some 0C  .□ 
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4. Numerical examples and discussion 

In this section, we shall present some examples to verify our theoretical findings. 

4.1. Forward problem 

Example 4.1. 

( )
( )

( ) ( )

2

1 1

2 2

4

,0 1

4 ,1 2

sin ,0 1 ,0 1
2

,0
3

sin ,1 2
4

2
0, 0, 2,

2

t

u u
x

t x x

u u
x

t x x

x
x t

u x
x

x

e
u t u t







−

    
=    

   
    
 =   

    


       
  = 

 −       


 = =


,    (4.1) 

The exact solution of the equation is as follows: 

( )
( )

2

2

4

4

sin ,0 1
2

, ,0 1
3

sin ,1 2
4

t

t

x
e x

u x t t
x

e x









−

−

  
   

 
=  

− 
  

 

.     (4.2) 

Example 4.2. 

( ) ( ) ( )( )

( )

( )
( )

( )

( ) ( )

2

2

1 1
0.1

2 2
2 0.1

2
0.1 0.09 0.09 cos sin ,0

3

2
0.01 0.06 sin 4 , 1

3

,0 1
2

sin ,0
3

,0
2

sin 4 , 1
3

0, 1, 0

t

t

u u
x e x x x x

t x x

u u
e x x

t x x

t
x x

u x

x x

u t u t





   

 





−

−

    
= − + −    

   
    
 = +   

    
  

   = 


   
 = =

, (4.3) 

The exact solution of the equation is as follows: 

( )
( )

( )

2

2

0.1

0.1

2
sin ,0

3
, ,0 1

2
sin 4 , 1

3

t

t

e x x

u x t t

e x x









−

−


 

=  
  


.      (4.4) 
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Example 4.3. 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1

2

2 3

2

3 3

2

2 1
1 sin cos ,0 1

2 2 1
cos sin ,1 2

2
,0 1

4 2 3
cos sin ,2 2.5

4

5
0, 0, 2.5,

8

t t

t t

t t

u x u
x e x e x x

t x x

u u
e x e x x x

t x x
t

u u
e x e x x x

t x x

u t u t

 
 

 
 

 
 

− −

− −

− −

    − 
= − − +    

   
    
 = − +   
      
    

= − +    
   


= =



, (4.5) 

The exact solution of the equation is as follows: 

( )

( )

( )

( )

sin ,0 1

1
, sin ,1 2 ,0 1

2

1
sin ,2 2.5

4

t

t

t

e x x

u x t e x x x t

e x x x







−

−

−


 




=    



 

.      (4.6) 

Solve for the temperature function ( ),u x t . Take 
1

2
 = . Divide the space interval and the time 

interval into equal parts by the space-step size
1

60
h =  and the time-step size 

1

30
 = . Table 1 shows 

the maximum error under different difference methods. Figure 2 shows the error diagram under the 

proposed method. 

Table 1. Maximum error of different difference methods. 

Example Finite volume method Harmonic mean Arithmetic mean 

4.1 41.97 10−  
42.03 10−  

42.06 10−  

4.2 31.38 10−  
31.61 10−  

31.83 10−  

4.3 55.97 10−  
56.61 10−  

57.45 10−  

 

(a) Example 4.1.    (b) Example 4.2.    (c) Example 4.3. 

Figure 2. Error diagram for the forward problem. 
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4.2. Inverse problem 

Example 4.4. 

( )
( )

( ) ( )

2

2

2

1 1

2 2

4

4

4

,0 1

4 ,1 2

sin ,0 1 ,0 1
2

,1
3

sin ,1 2
4

2
0, 0, 2,

2

t

u u
x

t x x

u u
x

t x x

x
e x t

u x
x

e x

e
u t u t











−

−

−

    
=    

   
    
 =   
    


  

    
  = 

 − 
   

  


 = =


    (4.7) 

The exact solution of the equation is: 

( )
( )

2

2

4

4

sin ,0 1
2

, ,0 1
3

sin ,1 2
4

t

t

x
e x

u x t t
x

e x









−

−

  
   

 
=  

− 
  

 

.      (4.8) 

Example 4.5. 

( ) ( ) ( )( )

( )

( )
( )

( )

( ) ( )

2

2

2

2

1 1
0.1

2 3
2 0.1

0.1

0.1

2
0.1 0.09 0.09 cos sin ,0

3

1 2
0.01 0.06 sin 4 , 1

3

,0 1
2

sin ,0
3

,1
2

sin 4 ,1
3

0, 1, 0

t

t

u u
x e x x x x

t x x

u u
e x x

t x x

t
e x x

u x

e x x

u t u t









   

 






−

−

−

−

    
= − + −    

   
    
 = +   
    

  
   = 


   

 = =

. (4.9) 

The exact solution of the equation is: 

( )
( )

( )

2

2

0.1

0.1

sin 0 1
, 0 1

sin 4 1 2

t

t

e x x
u x t t

e x x









−

−

  
=  

 

，
，

，
,     (4.10) 

 

 



6161 

AIMS Mathematics  Volume 10, Issue 3, 6144–6167. 

Example 4.6. 

( ) ( ) ( )

( ) ( )

( ) ( )

( )

( )

( )

1 1

2

2 3

2

3 3

2

1

1

1

2 1
1 sin cos ,0 1

2 2 1
cos sin ,1 2

2

4 2 3
cos sin ,2 2.5

4

sin ,0 1

,1 sin ,1 2
2

4

t t

t t

t t

u x u
x e x e x x

t x x

u u
e x e x x x

t x x

u u
e x e x x x

t x x

e x x

e
u x x x x

e
x

 
 

 
 

 
 





− −

− −

− −

−

−

−

   − 
= − − +   

   

   
= − +   

   

   
= − +   

   

 

=  

( )

( ) ( )

,0 1

sin ,2 2.5

5
0, 0, 2.5,

8

t

t

x x

u t u t e



−












  
 
 




   


 = =


.  (4.11) 

The exact solution of the equation is: 

( )

( )

( )

( )

sin ,0 1

, sin ,1 2 ,0 1
2

sin ,2 2.5
4

t

t

t

e x x

e
u x t x x x t

e
x x x







−

−

−


 




=    



 


,      (4.12) 

Consider a perturbation ( )0.001sin x =  in the measured value ( ),1u x . Reconstruct the 

temperature function ( ),u x t . Take 
1

2
 = . Divide the space interval and the time interval into equal 

parts by the space-step size 
1

60
h =  and the time-step size 

1

30
 = . Table 2 shows the maximum 

errors under different difference methods. Table 3 shows the maximum errors under different 

regularization methods. Figure 3 shows the error diagram under the proposed method. 

Table 2. Maximum errors of different difference methods. 

Example Finite volume method Harmonic mean Arithmetic mean 

4.4 0.0117  0.0143  0.0188  

4.5 0.0669  0.0789  0.0833  

4.6 0.0355   0.0457  0.0521  
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Table 3. Maximum errors of different regularization methods. 

Example Landweber iteration Tikhonov regularization Conjugate gradient 

 2

1

T

 
 = 
 
 

 ( )310 −=  ( )610r −=  

4.4 0.0117  0.0224  0.0130  

4.5 0.0669  0.0767  0.0675  

4.6 0.0355  0.0552  0.0468  

 

(a) Example 4.4.   (b) Example 4.5.    (c) Example 4.6. 

Figure 3. Error diagram for the inverse problem. 

It can be seen from these graphs that the finite volume method is more efficient than traditional 

difference methods, especially in the inversion of heat conduction in heterogeneous media. In the 

case of given regularization parameters and tolerances, Landweber iteration is more accurate than the 

Tikhonov regularization and conjugate gradient methods, but it also takes a longer time for 

calculation. 

As can be observed in Figures 2 and 3, the forward problem and inversion problem show 

different error evolution patterns. In the forward problem, truncation errors introduce minor 

inaccuracies during each time step. These inaccuracies progressively accumulate with iterations, 

manifesting as an error growth pattern. Conversely, for the inverse problem, the diffusion of heat 

conduction induces progressive smoothing of high-frequency components in initial conditions over 

time. Early time nodes require recovering high-frequency features from severely attenuated signals, 

amplifying noise sensitivity and reconstruction errors; later time nodes benefit from reduced signal 

attenuation, enabling more stable recovery with diminished errors, manifesting as an error decay 

pattern. 

4.3. Sensitivity analysis 

Consider Example 4.2. Changing the number of time nodes and space nodes, the maximum 

error variation under the proposed method is shown in Figure 4. 
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Figure 4. Maximum error variation for Example 4.2. 

Consider Example 4.5. Fixing the noise level 0.001

= , and changing the numbers of time 

nodes and space nodes, the maximum error variation under the proposed method is shown in Figure 5. 

 

Figure 5. Maximum error variation for Example 4.5. 

For fixed time nodes and space nodes, changing the noise level 


, the maximum error 

variation under different regularization methods is shown in Figure 6. 

 

Figure 6. Maximum errors variations at fixed mesh for Example 4.5. 
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For fixed time nodes and noise level 0

= , setting the maximum number of iterations to 

610  and changing the number of space nodes, the maximum error variation under the proposed 

method is shown in Figure 7. 

 

Figure 7. Maximum error variation at 0 =  for Example 4.5. 

As shown in Figures 4 and 5, the error decreases effectively with increasing temporal and 

spatial node counts. A slower error reduction with temporal nodes occurs because the error is 

predominantly influenced by space nodes with lower convergence orders. In Figure 5, however, the 

error declines even more gradually, since increasing nodes only mitigates inherent errors of the 

difference scheme itself, not additional perturbations caused by external disturbances. Figure 6 

demonstrates that the Landweber iteration exhibits stronger noise resistance compared to the 

Tikhonov and conjugate gradient methods. Notably, residual errors persist even at zero noise levels 

due to the intrinsic limitations of the difference scheme. Figure 7 reveals that increasing space node 

counts effectively reduces errors when noise is absent, highlighting the method's theoretical 

convergence potential under ideal conditions. 

5. Conclusions 

Heat conduction in multi-layered media presents a persistent research challenge. We 

constructed a difference scheme using the finite volume method to address the forward problem. To 

solve the inverse problem, we employed the Landweber iterative regularization method, 

incorporating the difference scheme developed for the forward problem. We validated the method 

through numerical experiments, including comparative studies with existing approaches and 

sensitivity analyses. The proposed method demonstrates enhanced accuracy and effectiveness, 

showing superior precision and noise resistance compared to conventional methods. 

Despite significant progress in heat conduction research for multi-layered media, challenges 

persist. The finite volume method requires high-precision discretization of accurate solutions, which 

increases computational costs and reduces the stability of operator equations in inverse problems. To 

enhance both efficiency and accuracy, adopting more effective approaches like the finite element 

method for deriving numerical schemes should be considered. While effective in numerical 

verification, the Landweber iterative regularization we employed suffers from high computational 

costs and lengthy processing times. In numerical experiments, we found that the Tikhonov 

regularization and conjugate gradient methods demonstrate superior computational efficiency. These 
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methods could serve as alternatives to the Landweber iteration method when high precision and 

stability are not strictly required. Alternatively, improvements can be sought to enhance accuracy 

while preserving efficiency—such as determining appropriate regularization parameters [27]. 

Meanwhile, accelerating the Landweber iteration method presents another viable direction for 

boosting computational speed. Accelerated Landweber iteration could focus on three primary 

strategies: optimizing the iteration scheme [28], developing effective preconditioning techniques [29], 

and implementing adaptive weight adjustment strategies [30]. These methods achieved more 

efficient results than the Tikhonov regularization and conjugate gradient methods. Future research 

should focus on developing high-accuracy and high-efficiency solution methods. 

Author contributions 

Yu Xu: conceived the idea and wrote original draft; Youjun Deng: analyzed formulas and 

proofreading manuscripts; Dong Wei: verified the analytical methods and analyzed the result. All 

authors have read and approved the final version of the manuscript for publication. 

Use of Generative-AI tools declaration 

The authors declare they have not used artificial intelligence (AI) tools in the creation of this 

article. 

Acknowledgments 

This work of Y. Deng was supported by NSFC-RGC Joint Research Grant No. 12161160314 

and State Key Laboratory of Aerodynamics. 

Conflict of interest 

The authors declare no conflict of interest in this paper.  

Youjun Deng is the guest editor of special issue “Inverse problem and its applications in 

imaging and material science” or AIMS mathematics. Youjun Deng was not involved in the editorial 

review and the decision to publish this article. 

References 

1. Udayraj, P. Talukdar, A. Das, R. Alagirusamy, Heat and mass transfer through thermal protective 

clothing—A review, Int. J. Therm. Sci., 106 (2016), 32–56. 

https://doi.org/10.1016/j.ijthermalsci.2016.03.006 

2. Z. Zhang, Y. Xiong, F Guo, Analysis of wellbore temperature distribution and influencing 

factors during drilling horizontal wells, J. Energy Resour. Technol., 140 (2018), 092901. 

https://doi.org/10.1115/1.4039744 

3. P. M. Sutheesh, A. Chollackal, Thermal performance of multilayer insulation: A review, In: IOP 

conference series: Materials science and engineering, 396 (2018), 012061. 

https://doi.org/10.1088/1757-899X/396/1/012061 

https://doi.org/10.1016/j.ijthermalsci.2016.03.006
https://doi.org/10.1115/1.4039744
https://doi.org/10.1088/1757-899X/396/1/012061


6166 

AIMS Mathematics  Volume 10, Issue 3, 6144–6167. 

4. L. Kong, L. Zhu, Y. Deng, H. Liu, Electro-osmotic flow within multi-layer microfluidic 

structures and an algebraic framework for hydrodynamic cloaking and shielding, SIAM J. Appl. 

Math., 84 (2024), 2365–2392. https://doi.org/10.1137/24M1674078 

5. L. Kong, L. Zhu, Y. Deng, X. Fang, Enlargement of the localized resonant band gap by using 

multi-layer structures, J. Comput. Phys., 518 (2024), 113308. 

https://doi.org/10.1016/j.jcp.2024.113308 

6. Y. Deng, L. Kong, H. Liu, L. Zhu, Elastostatics within multi-layer metamaterial structures and 

an algebraic framework for polariton resonances, ESAIM, 58 (2024), 1413–1440. 

https://doi.org/10.1051/m2an/2024041 

7. Y. Deng, H. Liu, Y. Wang, Identifying active anomalies in a multi-layered medium by passive 

measurement in EIT, SIAM J. Appl. Math., 84 (2024), 1362–1384. 

https://doi.org/10.1137/23M1599458 

8. X. Fang, Y. Deng, On plasmon modes in multi-layer structures, Math. Method. Appl. Sci., 46 

(2023), 18075–18095. https://doi.org/10.1002/mma.9546 

9. T. Liu, C. Zhao, Dynamic analyses of multilayered poroelastic media using the generalized 

transfer matrix method, Soil Dyn Earthq Eng, 48 (2013), 15–24. 

https://doi.org/10.1016/j.soildyn.2012.12.006 

10. L. B. Lesem, F. Greytok, F. Marotta, J. J. McKetta Jr, A method of calculating the distribution of 

temperature in flowing gas wells, Trans. AIME, 210 (1957), 169–176. 

https://doi.org/10.2118/767-G 

11. L. Landweber, An iteration formula for Fredholm integral equations of the first kind, Am. J. 

Math., 73 (1951), 615–624. https://doi.org/10.2307/2372313 

12. A. A. Tikhonov, V. V. Glasko, Methods of determining the surface temperature of a body, Ussr 

Comput. Math. Math. Phys., 7 (1967), 267–273. https://doi.org/10.1016/0041-5553(67)90161-9 

13. L. Elden, Approximations for a Cauchy problem for the heat equation, Inverse Probl., 3 (1987), 

263. https://doi.org/10.1088/0266-5611/3/2/009 

14. L. Elden, Hyperbolic approximations for a Cauchy problem for the heat equation, Inverse Probl., 

4 (1988), 59. https://doi.org/10.1088/0266-5611/4/1/008 

15. C. H. Huang, S. P. Wang, A three-dimensional inverse heat conduction problem in estimating 

surface heat flux by conjugate gradient method, Int. J. Heat Mass Tran., 42 (1999), 3387–3403. 

https://doi.org/10.1016/S0017-9310(99)00020-4 

16. J. M. Connors, J. S. Howell, W. J. Layton, Partitioned time stepping for a parabolic two domain 

problem, SIAM J Numer. Anal., 47 (2009), 3526–3549. https://doi.org/10.1137/080740891 

17. A. Shi, Z. Liu, X. Wang, Finite Analytic numerical method for the fluid flows and heat transfer 

in heterogeneous media (In Chinese), Chinese Quarterly of Mechanics, 40 (2019), 645–655. 

https://doi.org/10.15959/j.cnki.0254-0053.2019.04.01 

18. Y. Wang, Y. Xu, D Xu, J. Fan, Optimization of multilayer clothing assemblies for thermal 

comfort in cold climate, Int. J. Therm. Sci., 179 (2022), 107586. 

https://doi.org/10.1016/j.ijthermalsci.2022.107586 

19. W. Wu, Y. Yang, H. Zheng, S. Wang, N. Zhang, Y. Wang, Investigation of the effective 

hydro-mechanical properties of soil-rock mixtures using the multiscale numerical manifold 

model, Comput. Geotech., 155 (2023), 105191. https://doi.org/10.1016/j.compgeo.2022.105191 

https://doi.org/10.1137/24M1674078
https://doi.org/10.1016/j.jcp.2024.113308
https://doi.org/10.1051/m2an/2024041
https://doi.org/10.1137/23M1599458
https://doi.org/10.1002/mma.9546
https://doi.org/10.1016/j.soildyn.2012.12.006
https://doi.org/10.2118/767-G
https://doi.org/10.2307/2372313
https://doi.org/10.1016/0041-5553(67)90161-9
https://doi.org/10.1088/0266-5611/3/2/009
https://doi.org/10.1088/0266-5611/4/1/008
https://doi.org/10.1016/S0017-9310(99)00020-4
https://doi.org/10.1137/080740891
https://doi.org/10.15959/j.cnki.0254-0053.2019.04.01
https://doi.org/10.1016/j.ijthermalsci.2022.107586
https://doi.org/10.1016/j.compgeo.2022.105191


6167 

AIMS Mathematics  Volume 10, Issue 3, 6144–6167. 

20. Y. Yang, W. Wu, H. Zheng, S. Wang, L. Yang, An efficient monolithic multiscale numerical 

manifold model for fully coupled nonlinear saturated porous media, Comput. Method. Appl. M., 

418 (2024), 116479. https://doi.org/10.1016/j.cma.2023.116479 

21. Y. Hou, X. Zhang, S. Wang, A stabilized state-based peridynamic heat conduction model for 

interface thermal resistance problems, Appl. Math. Model., 137 (2025), 115504. 

https://doi.org/10.1016/j.apm.2024.05.001 

22. Y. Hou, X. Zhang, A bond-augmented stabilized method for numerical oscillations in 

non-ordinary state-based peridynamics, Eng. Fract. Mech., 307 (2024), 110276. 

https://doi.org/10.1016/j.engfracmech.2024.110276 

23. W. Wu, Y. Jiao, F. Zheng, J. Zou, S. Wang, NMM-based computational homogenization for 

nonlinear transient heat conduction in imperfectly bonded heterogeneous media, Int. Commun. 

Heat Mass, 162 (2025), 108599. https://doi.org/10.1016/j.icheatmasstransfer.2025.108599 

24. W. Wu, Y. Yang, Y. Jiao, S. Wang, Stability analysis of unsaturated slopes under rainfall and 

drainage using the vector-sum-based numerical manifold model, Comput. Geotech., 179 (2025), 

106992. https://doi.org/10.1016/j.compgeo.2024.106992 

25. M. T. Nair, Regularization of ill-posed operator equations: An overview, J. Anal., 29 (2021), 

519–541. https://doi.org/10.1007/s41478-020-00263-9 

26. O. Scherzer, The use of Morozov's discrepancy principle for Tikhonov regularization for solving 

nonlinear ill-posed problems. Computing, 51 (1993), 45–60. 

https://doi.org/10.1007/BF02243828 

27. R. Molero, M. Martínez-Pérez, C. Herrero-Martín, J. Reventós-Presmanes, I. Roca-Luque, L. 

Mont, et al., Improving electrocardiographic imaging solutions: A comprehensive study on 

regularization parameter selection in L-curve optimization in the Atria. Comput. Biol. Med., 182 

(2024), 109141. https://doi.org/10.1016/j.compbiomed.2024.109141 

28. L. Chen, Y. Li, F. Shen, R. Xue, General temperature computational method of linear heat 

conduction multilayer cylinder, J. Iron Steel Res. Int., 17 (2010), 33–37. 

https://doi.org/10.1016/S1006-706X(10)60041-6 

29. S. Xie, G. Qu, W. Li, A preconditioned Landweber iteration-based Bundle adjustment for 

large-scale 3D reconstruction, Commun. Nonlinear Sci., 130 (2023), 107770. 

https://doi.org/10.1016/j.cnsns.2023.107770 

30. F. de Monte, An analytic approach to the unsteady heat conduction processes in one-dimensional 

composite media, Int. J. Heat Mass Tran., 45 (2002), 1333–1343. 

https://doi.org/10.1016/S0017-9310(01)00226-5 

© 2025 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (https://creativecommons.org/licenses/by/4.0) 

 

https://doi.org/10.1016/j.cma.2023.116479
https://doi.org/10.1016/j.apm.2024.05.001
https://doi.org/10.1016/j.engfracmech.2024.110276
https://doi.org/10.1016/j.icheatmasstransfer.2025.108599
https://doi.org/10.1016/j.compgeo.2024.106992
https://doi.org/10.1007/s41478-020-00263-9
https://doi.org/10.1007/BF02243828
https://doi.org/10.1016/j.compbiomed.2024.109141
https://doi.org/10.1016/S1006-706X(10)60041-6
https://doi.org/10.1016/j.cnsns.2023.107770
https://doi.org/10.1016/S0017-9310(01)00226-5

