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Abstract: The primary objective of this paper was to delve into the exploration of numerical
methods for solving forward and inverse problems related to heat conduction in one-dimensional
multi-layered media. To address the non-differentiability at multilayer medium interfaces that
prevents direct discretization, this paper employed the finite volume method to construct finite
difference schemes. Compared with traditional difference methods, the proposed method improved
accuracy by considering coefficient variations near interfaces. For the ill-posed initial value problem
in inverse heat conduction of multilayer media, we transformed the inverse problem into an operator
equation using the finite volume method for forward problems. The Landweber iterative
regularization method combined with the Morozov discrepancy principle was then applied to obtain
iterative sequences. Numerical simulations demonstrate the algorithm's superior accuracy and noise
resistance compared with conventional methods through comparative studies and sensitivity
analyses.
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1. Introduction

The issue of heat conduction in multi-layered media has garnered significant attention in both
industrial applications and scientific research, emerging as a crucial and challenging area of study.



6145

This is evident in various contexts such as heat transfer dynamics of multi-layer protective clothing [1],
temperature fluctuations within wellbores and geological formations comprised of multiple layers [2],
and the insulation properties of multi-layered materials used in low-temperature containers [3]. These
real-world examples underscore the complexity and practical relevance of accurately modeling heat
conduction in multi-layered media. The mathematical analysis of multi-layered media has also
undergone a noteworthy breakthrough (i.e., [3-9]).

Ever since Lessem proposed the problem of heat conduction for porous media in 1957,
extensive research has been conducted by scholars on this particular issue [10]. In 1951, Landweber
proposed the Landweber iterative regularization method for solving linear problems [11]. In 1967,
Tikhonov proposed the Tikhonov variational regularization method based on the principle of
variation [12], providing substantial means for solving heat conduction inversion problems. In 1987,
Elden investigated the sideways parabolic equations in multi-layered media [13,14]. Huang studied
the conjugate gradient method to solve the three-dimensional transient inverse heat conduction
problem in 1999 [15]. In 2009, Connors J proposed partitioned time stepping for a parabolic two
domain problem [16]. In 2019, Shi developed a finite analytical method for heat transfer in
heterogeneous media [17]. In 2022, Wang presented a theoretical study on the optimization of key
material parameters of multilayer clothing assemblies [18]. In 2023, Wu proposed a homogenization
model for modeling 3D heterogeneous porous elastic media [19,20]. Recently, Hou proposed a stable
state—based ring dynamic heat transfer model to investigate the interfacial thermal resistance of
materials with complex heat transfer constitutive relations [21,22]. At the same time, Wu proposed a
homogenization model based on the numerical manifold method for nonlinear transient heat
conduction in heterogeneous media [23,24]. The numerical manifold method has high computational
accuracy and is suitable for complex interface conditions, showing great potential. However, it
requires a large amount of computation compared with the finite volume method, and the noise
resistance when applied to inversion is still to be verified.

In practical problems, the multi-layered medium heat conduction problem cannot be solved
analytically, and the calculation volume may escalate significantly as the number of layers increases.
The traditional difference schemes usually replace the coefficient of the interface with the arithmetic
average or harmonic average of the coefficient near the interface; however, they ignore the variation
of the coefficient near the interface in heterogeneous media and fail to fully ensure the continuity of
heat flux. Traditional numerical methods also present difficulties in solving the inverse problem of
heat conduction in multi-layered media. In this paper, we will mainly provide numerical solution
methods for the forward and inverse problems of multi-layered non-uniform medium heat
conduction and verify the effectiveness and feasibility of the algorithms. The structure of this paper
is organized as follows: In Section 3, we present our finite volume method-based difference scheme
for the forward problem of heat conduction in multi-layered media. Also, we apply the forward
problem's difference scheme to construct the operator equation for the inverse heat conduction
problem in multi-layered media. Then, we solve this equation using the Landweber iterative
regularization method. In Section 4, we demonstrate the accuracy and effectiveness of our methods
through numerical simulations. The conclusions are given in Section 5.

This method avoids direct discretization of the interface. Instead, it constructs the scheme by
using the integrability of differential equations and continuity conditions of heat flux. Thus, the
method overcomes the limitation of traditional difference methods in handling non-differentiable
interfaces, takes coefficient variations into account, and ensures more accurate continuity of heat flux.
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Numerical experiments demonstrate that this method achieves higher accuracy while maintaining
computational efficiency compared to traditional difference methods.

2. Heat conduction equations in multi-layered media

Consider the one-dimensional multi-layer heat conduction equation in a medium, where the
spatial axis is X, the time variable is t, and the time interval is [O,T]. In a rod composed of

multiple layers of medium, let 0=x°<x' <L <x"* <x" =1, where the length of the rod is 1, and
the interval of the i -th layer of medium is [x“l,x‘], i=1,2,L ,n, as shown in Figure 1.

\ 4

Figure 1. Schematic diagram of multi-layered medium heat conduction.

Let the temperature function of the rod be u(x,t), where the initial temperature at time t=0
IS f(x), the boundary temperature at x=0 is a(t), and the boundary temperature at x=1 is
B(t). Let us assume that the physical parameters in the medium are only dependent on spatial

parameters X and are continuous functions. Let the temperature function, thermal conductivity,
density, and specific heat capacity of the i-th layer of the medium be denoted by u'’ (x, t), k' (x)

p'(x), and c'(x), respectively. Let the heat source intensity of the medium be q'(x,t). Using the
first law of thermodynamics and Fourier's law, the temperature function u‘(x,t) satisfies the
following equation:

c'(x) o' (x)aa—utizg(k‘ (x)%{iJ+qi (x,t), X <x<x
u(x,0)="1(x) Q=12 .n, 2.1)
u(0,t)=a(t)
u(l,t)=A(t)
O<x<Il,0<t<T

At the interface between media, there are the following connection conditions:

_ i+l

=u

i+1 __kiﬁ_ui ,0<t<T,i=12,L ,n-1. (2.2)
, OX

X=X

_ki+16_u
OX

x=x!
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3. Forward and inverse problems in multi-layered medium heat conduction
3.1. Numerical solution of the forward problem

Consider Egs (2.1) and (2.2) as follows:

c‘(x)p‘(x)%:g[k‘(x)%j+qi(x,t),xi‘l<x<x‘
U(X,O):f(X) ,i:1,2,L,I’\,
u(0,t)=a(t)
u(l,t)=A(t)
O<x<l,0<t<T
and
Ui X:Xi =Ui+1 X:Xi
i+1 i ,0<t<T,i=12L ,n-1,
_ki+la_u :_kia_u
OX iy OX o

where c'(x), ' (x),k'(x) are continuous functions on (x”, X' ) We now solve for the temperature
function u(x,t).
For the interior of the i-th medium, the spatial interval [x”,xi] is uniformly divided into a

total of J' parts, and the nodes are denoted as X' "=x,<X <L <X, <X, =x, with the

i1

space-step size h' = The approximate value of u'(x,t) atnode x=x; istakenas uj(t),

_ X+ x!
and the spatial interval s is then dual-meshed, with the nodes denoted as x' , =— > =
-1
2

Use the finite volume method to construct a difference scheme: for x=x;, j=1,2,L ,J' -1,

the first equation in (2.1) is integrated over the interval {xi X' } to give the following:

1
2%
xij+1 i i oul i aul Xij% Xijé i
e (0 (x) 7 dx =k (x) -~ +], 7 (xt)dx, (3.1)

i

Let us denote ci(x}),pi(x}),ki(x}) as ¢, p},ki and use the rectangle formula to obtain the
following:
i i‘aui‘ i ui'+1(t)_ui'(t) i ui‘(t)_ui'—l(t) Xi”% i
thij':kH;%—kj_l%+L q'dx, (3.2)
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Divide the time interval [0,T] into K parts and let 0=t,<t <L <t , <t =T be the

time node, 7, =t, —t,, the time-step size, and u‘j'k the approximate value of the function u'(x,t)
. DL e : S
at the node (x'j,tk). Denote (;, :F.[xi 12 q'(xt,)dx. Use the trapezoidal rule and discretize the
3

time variable as follows:

hiCijp} u;,k+1_uj,k

z-k+1

T -u T o
:elk;Jrl J+l‘k+]hi jk+1 _kLE jik+1 hi j-1k+1 +h|q|j’k+1]’ (33)
2 2

i ui'+, _ui', i Ui‘, _Ui'—, i i

+(1_‘9)(k1+1 J lkhi = _kj—i - hi = th qj,kj
2 2

where 6 <[0,1].

For the interface between media, let u;, be the approximate value of the function u!' (x,t) at

= :ii‘lq‘(x,tk)dx, Qo = h‘2*1 X(élqiﬂ(x,tk)dx. The finite volume

method and the connection condition (2.2) can be used to obtain

the node(x',t, ). Denote g,

[N} i i+l A0+l i+l i
hCJ‘pJ‘+h Co Ao ull<+1_ull<
2 Ty
RIS TY _ Uli< 1—Uii hi hitt
_ i+1 T1k+1 k+1 i + J'-1k+1 i i+1
= e{kl e —kJii — +EqJ,M+—2 Qoscsr | (3.4)
2 2

. ui+1_ui : Ui _uii_ hi i hi+1 »
+(1_6)£k11 “;,]Hl : _kJL; k hiJ = +Equ,k + 2 qo,li
2 2

We can transform (3.3) and (3.4) to obtain difference schemes:

ok’ ook ok’ ok’
TR LT, IS T Y R I
- hi uj+1.k+l 7, + hi + h uj,k+1_ hi uj,k+1=
+1
1-0)k' o (1-0)K 1-0)k' 1-0)k'
ST L B e S S PR E
B e I T

+(1-0)h'q;  +6h'q), .,

and
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SRR R ok’ ok ok’

hlczipji +h|+lC(|)+lp[|)+1 \]LE % i \]L%

T e 2 R
k+1

i
Ji-1k+1

(1_6) ki; i+ hiCiJipgi + hi+1c(i)+lp(i)+l (1_9) ki{l (1_0) k;i_; i
T T 2r T w69
k+1

(1-0)h'

) (1-o)h™
hi J'-1k 2

2

i+ hi i hHl i+
QO,kl + QEQ + 9_q0,1<1+1

i
J'k+1 2

qu,k +

Note U, :[uik,u;k,L U oo Uf L ,uJ”n_lJ, J=>1J"-1 and transform (3.5) and (3.6) into
i=1
the following form:
AU, , =BU, +C,, (3.7)

where A, B isthe JxJ matrix,and C isthe Jx1 vector.
For the initial conditions and boundary conditions in (2.1), we have

ujo = F(x;)
Ug.i =a(t) , (3.8)
uan",k :ﬁ(tk)

By iteratively applying (3.7) and (3.8) intime layer k=0,1L ,K-1, we can obtain u‘j]k.

Theorem 3.1. When 8 e {O%j U(%,l} , the local truncation error of (3.5) is O((hi)2 +r), and the

local truncation error of (3.6) is O(hi +h‘+1+r). When 6 =%, the local truncation error of (3.5) is

O((hi)2+rz) , and the local truncation error of (3.6) is O(h'+h™ +7?).

Proof. Let us first consider the local truncation error of (3.5), and by using Taylor expansion on u
with respect to X, we can obtain

i i
¢ p Uj i —Uj
i

Tk+1

=Q (kiaij —(kiaij _ﬂ (kialj —(kiaij , (3.9)
h 8X j+%,k+l aX j—%,kﬂ h 8X jJ%,k 8X j—%,k

i i i\2
+(1-0)q;, +6?qjyk+l+0((h ) )
. , . ou . .
Using Taylor's expansion on k& with respectto X gives:

AIMS Mathematics Volume 10, Issue 3, 6144-6167.
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hiCi-pi. uj,k+l_uj,k
JJ Tk+l
_ _ ,  (3.10)
1 i ou' i ou' i i i\2
_L ea(k'—j +(1—0)8(k'—j +(1—6?)q'.yk+49q'.’k+1+0( h )
G R (e (U
. , . o(, ou . .
Using Taylor's expansionon u, v ka— , g with respectto t, we can obtain
X X
Ci ia_ui —g k'a_uI _|_qi
pat.g x\ oox ) 1 ik
J,k+2 j,k+2
_ _ , (3.11)
1220 0 [ w | +O((h‘)2)+0(r2)
2 Otox oX ). 1 ot ) 1
j,k+§ j,k+E
Considering the differential equation within the medium, we have
. ou’ oo :
c'p'— =—| k'— +q' : 3.12
ot Dk GX( 8Xj 1 a ‘”“1 (3.12)
2

ik 2
Compare (3.12) with (3.11) to obtain the local truncation error of the difference scheme (3.5)

when 6 e [O, %) U(E ,l} :

2

R :O(r+(hi)2). (3.13)

1 ) )
And when 6= E' the local truncation error is:

R :o(f2 +(n )2). (3.14)

Then, consider the local truncation error of (3.6), and by using Taylor expansion on U with
respect to X, we can obtain

[N i i+1A041 i+l i
hCJiin+h Co Ao Uy —Uy

2 Tk +1

i+l i i+1 i
—0 (k”la“—j —(k‘aij +(1-0) [k”la“—j —(kiai) . (3.15)
ox %,k+l 2 Ji—%,kﬂ ox %,kﬂ ox Ji—%,kﬂ

o(h' h™ . 1-6(h h™ .. i3 i+1)3
+§(3q3',m+ > qo,kluj*T[gqy,k* 5 qo,kl}o((h) +(h 1))
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. . ou . .
Using Taylor's expansion on ka— with respectto X gives:
X

iAi i i+1 i+1 i+l i
hCJiin+h Co Ao 1|<+1_u1|<
2

z-k +1

i+1 ]
=Q hi+1g ki+1 ou h 0 kl au
2 oX X )y OX X )i
i+1 ]
+ﬂ hi+li ki+1au_ h 0 k, au
2 OX OX )y, OX OX )iy
| = i , (3.16)
2 i+1 2 i
+€{(h‘+1)26_2£k‘“—6u J —(hi)Z%Lk‘ai]
6 OX X o OX oX sk |
i+l 2 ]
1 (9 (h,+1) 2 0? iU ou —(h )2 0 K U au’
6 ox’ X Jo ox? X )5,

0 hi i hi+l i+ 1-0(h i hi+1 i+ i3 i+1)3
T L S (LU

Using Taylor's expansionon u, Q(k Z—uj q with respectto t, we can obtain
X X

i i+1 i+l
hi (Cipi alj +hi+l(ci+1pi+l ou j _ hi+1£(ki+1au_] +h' 0 (k' ou’ j
at Ji,k-% at O,k-% 8X 8X O,k-*—1 aX ivk+%

OX

2
i+1 2
n hiqi_ . +hi+lqi+1 . +Q (hi+l)2 8 k|+1 ou —(h )2 0 kl au
JIJH.E O,k+5 3 aX OX 0kel 6X OX 3 kst
2 i+1 2 i
1 9 <h|+1)28_2 k|+1 aU _(hi)28_2 klai 1 (317)
3 OX X )y, OX X )y,
_ . ] i+l i+l i
+1 ZGT hit 0 L ou +8q LR 0 k,au aq°
2 Otox OX o ) .1 atox | ox a ), 1
K+ ,

+O( (') (") & (" 01) 2

Considering the differential equation at the interface between media, we have

h' i a_ul N h'* o it ou'!
hi +hi+1 p 8t y k+£ hi +hi+1 p 6‘: Ok+£
k2 ,

. . . . . . , (3.18)
hl o , ﬁu' hH—l o i auH—l hl , h|+1 -
h'+h™ ox\ ox ), 1 h'+h™ ox X Jy.r h'+h™ s h +h' ok
K+ )

2

AIMS Mathematics
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Compare (3.17) with (3.18) to obtain the local truncation error of the difference scheme (3.5)

1 1
when fe|0,= =11
e[ 2)”(2 }

Riy=0(h' +h"+7), (3.19)
1 . :
And when 6= > the local truncation error is:
Riy=O(h +h""+7%), (3.20)
Therefore, Theorem 3.1 is proved. o

Theorem 3.2. When O ¢ Bl} , the difference schemes (3.5) and (3.6) satisfy stability conditions.

Proof. Using the freezing coefficient method, we freeze the variable coefficients k;,k;+l into
constant coefficients k' k', rewrite the variable coefficient formulas (3.5) and (3.6) into their

corresponding constant coefficient difference schemes, and then use the Fourier method to substitute

uj, =V, and u; =ul, =v,e®" to obtain:
_‘9_k_ivk+1eia(j+1)h +(h C. PJ -29ki Jvkueiajh _e_k_;vkﬂeia(j—l)h _
hl Tk+l I hl
—(1_9.)kl v ey e 2(1_.0)kl v, e + (1_6.?)kl v, g (3.21)
hl k z-k+1 hl ‘ hI k
+(1-0)h'q;  +6h'q), .,
and
i+1 al3is hiCii ,+hl+l i+1 i+l i i+1 . i i
_Okl Vi, (3 1)h+ 31 P Co P +9K +6’K1 +1e,ajh ok CLSIVN (3"-)n
hH 22—k+1 hl hH hl
1_9 ki+1 a3 hiCii I_+_hl+l(.:l+l i+l 1_0 ki+1 1_0 ki .
A0, g )[ o G (100 | hi) W @)
z-k+l
1-6)k'  woiap (1-0)h" ;. (1-0)h™ . h o
N hi) v 2) q,, ok 2) givola, ot g,

The growth factor is:

cip;—2(1-6) hk+1 k' (1—cosah)

G, (ph, )= , (3.23)
¢\ p +20 -1 ki (1-cosah)

(M

And

AIMS Mathematics Volume 10, Issue 3, 6144-6167.
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h|+1 i+1 i+l i+1 i

i+1 i
LEA - 9)(‘;,ﬂ E](l cosah) +i(L- 9)(E|+1—|;i]sinah
k+1
(3.24)

hiCii | h|+l i+l i+l i+1 i i+1 i
oPu TG oK™ KD osan)—io KK Jsinah
27k+l h h h h

th;ipjl

G,(ph,7)=

Obviously, when 6 e E ,1} , we always have:

G, (ph, 7)| <1, (3.25)
and
G, (ph. 7)|<1, (3.26)

Therefore, the difference schemes (3.5) and (3.6) are proved to be stable.o

However, the schemes may become unstable when ee(o,%j, but we can stabilize them by

restricting the mesh ratio.

always has

Theorem 3.3. When ee(o,%j, if the maximum mesh ratio r=max Tkz

¢ (x)pk(x) , the difference schemes (3.5) and (3.6) satisfy stability conditions.

“2{-20)K (x)

Proof. When ee(o,%j, if r< ¢ (x)pk(_x) , Obviously, we always have:

|G, (ph, 7)[<1. (3.27)

We only need to prove |G, (ph, z)|<1, namely

hi i_ h|+l i+l i+l i+1 i 2 i+1 i 2
Py TSy —-0) X K s cosan) |+ (1—0)| Ko — K Jsinan
h|+1 hl hH—l hl

21—k+l
e o g ) , . (3.28)
|C|i |i+ i+ C|+ i+ i+1 i i+l i .
< L £ +6 K -+ k (1-cosah)| +| 6 k.l—k—. sinah
27, ., W h' h*

It is equivalent to prove
hiCii I_|_h|+1 i+1 i+l i+1 i i+1 i 2 i+l i
LA IS N S, S R TURP ) kll ] 2o XK cosan |50, (3.29)
T h* ' h™ h h™ h'

AIMS Mathematics Volume 10, Issue 3, 6144-6167.
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And we have
hiCii ii+hi+1Ci+1 i+1 i+1 i i+1 2 i 2 i+1 i
31 P, 0o Ao k_ 1+k_' _2(1—26?) k. - |+ k— -2 k. 1+k—. cosah
Tk+l hH— hl hH— hl hl+ hl
hicii ii+hi+1ci+l i+l /| i i i+l i\?
> L0 hs 0 £ k.1+k—. -2(1-20) k.l+k—. , (3.30)
2-k+1 hH hl hH hl

- + - i+1 i+l 2 O

i i )
Tk Clipyi h Tk Co P h

hi+l hi

:[k”l kij (hi)Z 2(1—29)ki kiCBi,O;i (h”l)z 2(1_29)ki+1 ki+1c(i)+lp(i)+l

Therefore, |G, (ph, 7)|<1.
It implies that the difference schemes (3.5) and (3.6) are stable.o
When ee(o,%j, the stability condition can be optimized by decreasing the time step z, or

increasing the space step h'. Because of its unconditional stability and higher convergence order,

1 . . .
0 = 3 is usually taken in calculations.

3.2.

and

Numerical solution of the forward problem

Consider equations (2.1) and (2.2) as follows:

Ci(X)Pi(X)%=%(ki(x)%j+qi(X), Xt <x<x
1(x0)= 1) i=1,2,L,n
U(O,t)za(t) ! 1 & ’ )
u(1.0)=4(1)
O<x<l, 0<t<T

Ui L _ui+1 L

_ki+la_ui+l :_kia_ui 90StST7|=19 27 L,n_l,

X | x|

where c'(x),p'(x),k'(x) are continuous functions on (x"l,x‘).

Suppose that the temperature distribution at time t, has been measured as u' (x, to) , While the

initial temperature distribution f(x) is an unknown function. We now solve for the temperature

function u(x,t).

AIMS Mathematics Volume 10, Issue 3, 6144-6167.
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Reconstructing the temperature function u’ (x,t) only requires solving the initial temperature
distribution f(x), similar to the analysis for the forward problem. We can obtain the difference
schemes (3.5) and (3.6), and the matrix form (3.7) is as follows:

AU, , =BU, +C,,

By iteratively applying (3.7) in the time layer k=0,1L ,K -1, we can obtain

K-1

U, =(A"B) U, + Y (A'B) " A'C,, (3.31)
k=0
1K K3, Kkl
Note (A'B) =T, U,-> (A'B)  A'C, =F, thenwe have
k=0
TU, =F. (3.32)

The inverse heat conduction problem often has strong ill-posedness, and the Landweber
iterative regularization method is a classic method for solving ill-posed problems.

Consider solving the operator equation, namely:
Tx=y, (3.33)

where xe X, yeY, T:X —Y isalinear operator on a Banach space. In the solution of the heat

conduction inverse problem, the operator equation (3.33) is often an ill-posed problem, meaning that
there is no solution, the solution is not unique, or the solution is unstable. It is usually transformed
into finding the solution to the least squares problem, namely:

. 2
x" =arg min T —ylf, (3.34)

where arg mixn f (x) is the value of the independent variable X that corresponds to the minimum

value of f(x).

For ill-posed problems, the least squares solution is often unstable, and in practical problems,
y is often y° with disturbances, so the least squares solution has a large error from the true

solution. This instability is caused by inverting the matrix T , so the Landweber iterative
regularization method is used to avoid inverting the matrix T and transform the instability problem
into a stable problem.

Proposition 3.4 [25]. If yeR(T), then x is a solution to the least squares problem c with the

necessary and sufficient condition T'Tx" =T"y, where T" is the adjoint operator of T .

To solve the solution of T*Tx" =T"y?, it is first transformed into the following form:

AIMS Mathematics Volume 10, Issue 3, 6144-6167.
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x"=x" —a)(T X' —T*y‘s)

¥ (3.35)
=(1-aTT)x" +aT"y’
where O<o<—3 is the relaxation factor.
L(Y.X)
Use the fixed-point iteration method to solve for (3.35), as follows:
Xg:=0, x3:=(1-aT'T)x, , +aT"y’, (3.36)
where the relaxation factor @ is often taken to be the iteration step size.
Using mathematical induction, we have
m-1 n )
X =y (1-aTT) Ty’ (3.37)

Il
o

n

By the Banach fixed-point theorem, if y° ezR(T), the iteration will diverge, and data y°

contain noise level ¢ interference, so the iteration point approaches the true solution at the
beginning of the iteration, but the distance between the iteration point and the true solution will
increase after a long iteration. Therefore, a stopping criterion must be adopted to stop the iteration at
an appropriate time. The Morozov discrepancy principle is often used as it can prevent overfitting of
noisy data while maintaining solution stability, effectively approximating the true solution; it only
needs to know the noise level compared to a prior criterion.

The Morozov discrepancy principle [26]. For an iterative exponent m*:m(5, yﬁ), for given
numbers ¢, y°, and a number 7>2 independent of &, y°, the iteration will stop when
HTxi* -y’ HY <7< HTXf1 o y‘?HY .

We now consider convergence characteristics under the source condition x"e X, , for

v, f>0.
Theorem 3.5. If HTx,i —yﬂ‘Y > 26, then Hx‘S —x*”X <fo1 —XTHX :

m+1

Proof. Note ¢’ =y’ -Tx?, y=Tx", we have

e e R §
=[x ~x'[} +2w(T (x2—x")|e3 )Y v’ [Tl . (3.398)
I o (o), bt - ool e, -1k
In particular
o (v ~vler), +oleill |<o(25otl, -Jeill )= (20 -y, Jleil, <0, @39
and
x5 s1I2 *[|2 5112 s112
o[Tgn, ~lenl, <[], lenll, ~lenl, <0- (3.40)
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X(?

m+1

Then we have 0

2 s 2
X, <=
X', <|[%n =X, » namely |x

X[, <=, -2
Theorem 3.6. The Morozov discrepancy principle terminates the Landweber iteration in step
Proof. Using the Morozov discrepancy principle, we have
w8 <[ =y, =[x T T =y < [T (0, -+, (3.41)
In particular
WCE LG B LI GRS

(
‘(I—a)T*T)mT(T*T)

m-1 i
:‘ ol e2 I-(1 —wT*T)‘Hy‘S—yH, (3.42)
. )
s=(m) 2 e+o
Hence
b !
@ Z(m*) 2||t]>(z-2)s, (3.43)
This implies that
2
m*<C" (MJZM, (3.44)
1)

withsome C*>0.o

2v
Theorem 3.7. |x} —x'| < Joms +(w(m+1))”, |x. —x'|<C|f ||ﬁ 521 with some C>0.

Proof. Using x' e X, ,, we have

] = S of(1-am T 7|y -yl < Vams. (3.45)
i=0
and
bl <[ -aT ) (T Il (@(men)” (3.46)
So, we have
%3 = x| < [%5 = % |+ X" = % | < VoomS + ((m+1)) (3.47)
By (3.44) and (3.47), we have
[0, x| <Nom' 5 +(w(m"+1)) " <C|f [ 52 (3.48)

with some C >0.o
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4.  Numerical examples and discussion
In this section, we shall present some examples to verify our theoretical findings.

4.1. Forward problem

Example 4.1.
1 1
ai:é o ,0<x<1
ot ox\ ox
2 2
al:i 48L d<x<?2
ot ox| ox

2 4

u(0,t)=0,u(2,t)=
The exact solution of the equation is as follows:

_th R ”X
e 4sinf —|,0<x<1
2
u(x,t)= O0<t<l.

7[2’[ _
e 4 sin[ﬂ(sTx)],k X<2

Example 4.2.
ou' . 0 ou’* ~0.17%t . 2
ol ((0.1 0.09x) > )+0.097re (COS(ﬂ'X) 7rx5|n(7rx)),0 <X< 2

2 2
M 900.01 |4 0.067% " sin (47%), 2 < x <1
ot ox OX 3
sin(;rx),O_xsg

u(x,0)= ) 3
sin(47rx),§<x£1

u(0,t)=u(1t)=0

The exact solution of the equation is as follows:

e‘°'1”2tsin(7rx),0s xsZ
u(xt)= 3 O0<t<1.

e tsin (47zx),§ <x<1

,0<t <1,

(4.1)

(4.2)

(4.3)

(4.4)
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Example 4.3.

1 1

a%:%(%%(j—(x—l)e‘tsin(frx)+§e“cos(;rx),0<x<1
2 3

ai:i(%6L}—Ee‘tcos(;zx)jtle‘txsin(7zx),1<x<2

ot ox\z*ox ) « 2 0<t<1, (4.5)
3

a_o iza— —Ee cos(zrx)+3e ‘xsin(7zx),2<x<2.5

ot ox OX T 4

u(0,t)=0,u(25,t)=>

The exact solution of the equation is as follows:

e'sin(zx),0<x<1

u(x,t)= %e“xsin(;zx),l<x§2 ,0<t <1, (4.6)

%e‘xsin(nx),z <x<25

. 1 .. : .
Solve for the temperature function u(x,t). Take 6= 3 Divide the space interval and the time

interval into equal parts by the space-step sizeh = % and the time-step size 7 = % Table 1 shows

the maximum error under different difference methods. Figure 2 shows the error diagram under the
proposed method.

Table 1. Maximum error of different difference methods.

Example  Finite volume method  Harmonic mean Arithmetic mean
4.1 1.97x10™ 2.03x10™ 2.06x10™*
4.2 1.38x10°° 1.61x10°° 1.83x107°
4.3 5.97x10°° 6.61x10° 7.45x10°°

(a) Example 4.1. (b) Example 4.2. (c) Example 4.3.
Figure 2. Error diagram for the forward problem.
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4.2. Inverse problem

Example 4.4.
1 1
aizg ai ,O<X<1
ot ox| ox
2 2
M _ 014N ) 1 x<2
ot ox| ox
e4sin(%xj,osxs1 0<t<1 (4.7)
u(x1)=y ;
e_“sm(ﬂ( _X)J,1<x£2
4
7t
4
u(O,t)zo,u(Z,t):\/E2

The exact solution of the equation is:

i X
e 4 sin(—j,0£xsl

u(x,t)= o , ,0<t<1. (4.8)
e 4 sm[”( _X)],1< X<2
4
Example 4.5.
1 1
aait = %[(0.1—0.0%)%{) 0.097¢ %% (cos(nx)— zxsin (;;x)),o <X< %
2 3
W _ 101000 |1 0.06r% % sin(47x), 2 < x <1
ot moX OX 3
g0 sin(;:x),osxsg 0st=l 49
u(x,1)= 32
e sin (47x),1<x< 3
u(0,t)=u(1,t)=0
The exact solution of the equation is:
e %" sin (7x), 0<x<1
u(x,t)= , 0<t<1, (4.10)

e " tsin (47x), 1<x<2
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Example 4.6.
1 1
o _9 (2 X o j—(x—l)etsin(nx)+£e‘cos(ﬂx),0<x<1
ot ox\ z® ox T
2
Lo %a— —Ee‘tcos(;zx)+1e“xsin(7zx),1<x<2
ot  ox\m° oX T 2
3
M _ i[iza—j—getcos(7rx)+§etxsin(;:x),2<x<2.5
ot o 0 T 4
,0<t<1
esin(zx),0<x<1
-1
u(x,1)= e7xsin(7zx),1<x£2
-1
eszin(nx),2<x£2.5
u(0,t)=0,u(25t)==e

The exact solution of the equation is:

e'sin(zx),0<x<1
-t

u(x,t)= e?xsin(ﬂx),1£x£2 O0<t<1,

~t

eszin(;rx),2< Xx<25

(4.11)

(4.12)

Consider a perturbation &=0.001sin(x) in the measured value u(x,1). Reconstruct the

temperature function u (x,t). Take 6= 3 Divide the space interval and the time interval into equal

parts by the space-step size h :6—10 and the time-step size r=%. Table 2 shows the maximum

errors under different difference methods. Table 3 shows the maximum errors under different
regularization methods. Figure 3 shows the error diagram under the proposed method.

Table 2. Maximum errors of different difference methods.

Example  Finite volume method Harmonic mean Arithmetic mean
4.4 0.0117 0.0143 0.0188
4.5 0.0669 0.0789 0.0833
4.6 0.0355 0.0457 0.0521

AIMS Mathematics
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Table 3. Maximum errors of different regularization methods.

Example  Landweber iteration Tikhonov regularization ~ Conjugate gradient
[a)z 12] (a:10*3) (r:10’6)
7]
4.4 0.0117 0.0224 0.0130
4.5 0.0669 0.0767 0.0675
4.6 0.0355 0.0552 0.0468

(a) Example 4.4. (b) Example 4.5. (c) Example 4.6.

Figure 3. Error diagram for the inverse problem.

It can be seen from these graphs that the finite volume method is more efficient than traditional
difference methods, especially in the inversion of heat conduction in heterogeneous media. In the
case of given regularization parameters and tolerances, Landweber iteration is more accurate than the
Tikhonov regularization and conjugate gradient methods, but it also takes a longer time for
calculation.

As can be observed in Figures 2 and 3, the forward problem and inversion problem show
different error evolution patterns. In the forward problem, truncation errors introduce minor
inaccuracies during each time step. These inaccuracies progressively accumulate with iterations,
manifesting as an error growth pattern. Conversely, for the inverse problem, the diffusion of heat
conduction induces progressive smoothing of high-frequency components in initial conditions over
time. Early time nodes require recovering high-frequency features from severely attenuated signals,
amplifying noise sensitivity and reconstruction errors; later time nodes benefit from reduced signal
attenuation, enabling more stable recovery with diminished errors, manifesting as an error decay
pattern.

4.3. Sensitivity analysis

Consider Example 4.2. Changing the number of time nodes and space nodes, the maximum
error variation under the proposed method is shown in Figure 4.
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max err

50

the number of t nodes

p -

20

T a0

—~ 80
60

the numebr of x nodes

100

120

Figure 4. Maximum error variation for Example 4.2.

Consider Example 4.5. Fixing the noise level |5 =0.001, and changing the numbers of time

nodes and space nodes, the maximum error variation under the proposed method is shown in Figure 5.

max err

0.09

o
=]
@

0.07

the number of t nodes

b -

20

the number of x nodes

T 120

Figure 5. Maximum error variation for Example 4.5.

For fixed time nodes and space nodes, changing the noise level ||5||w the maximum error

variation under different regularization methods is shown in Figure 6.

AIMS Mathematics

max err

012

0.1 -

01

0.09

0.08 -

0.07

0.06

Tikhonov
CG

Landweber

/
Y/

P /,/ 4

0.004

1 1
0.006 0.008

the noise level

0.01

Figure 6. Maximum errors variations at fixed mesh for Example 4.5.
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For fixed time nodes and noise level |§] =0, setting the maximum number of iterations to

10° and changing the number of space nodes, the maximum error variation under the proposed
method is shown in Figure 7.

0.16

max err

. . . . . . . .
60 80 100 120 140 160 180 200 220 240
the number of x nodes

Figure 7. Maximum error variationat 6 =0 for Example 4.5.

As shown in Figures 4 and 5, the error decreases effectively with increasing temporal and
spatial node counts. A slower error reduction with temporal nodes occurs because the error is
predominantly influenced by space nodes with lower convergence orders. In Figure 5, however, the
error declines even more gradually, since increasing nodes only mitigates inherent errors of the
difference scheme itself, not additional perturbations caused by external disturbances. Figure 6
demonstrates that the Landweber iteration exhibits stronger noise resistance compared to the
Tikhonov and conjugate gradient methods. Notably, residual errors persist even at zero noise levels
due to the intrinsic limitations of the difference scheme. Figure 7 reveals that increasing space node
counts effectively reduces errors when noise is absent, highlighting the method's theoretical
convergence potential under ideal conditions.

5. Conclusions

Heat conduction in multi-layered media presents a persistent research challenge. We
constructed a difference scheme using the finite volume method to address the forward problem. To
solve the inverse problem, we employed the Landweber iterative regularization method,
incorporating the difference scheme developed for the forward problem. We validated the method
through numerical experiments, including comparative studies with existing approaches and
sensitivity analyses. The proposed method demonstrates enhanced accuracy and effectiveness,
showing superior precision and noise resistance compared to conventional methods.

Despite significant progress in heat conduction research for multi-layered media, challenges
persist. The finite volume method requires high-precision discretization of accurate solutions, which
increases computational costs and reduces the stability of operator equations in inverse problems. To
enhance both efficiency and accuracy, adopting more effective approaches like the finite element
method for deriving numerical schemes should be considered. While effective in numerical
verification, the Landweber iterative regularization we employed suffers from high computational
costs and lengthy processing times. In numerical experiments, we found that the Tikhonov
regularization and conjugate gradient methods demonstrate superior computational efficiency. These

AIMS Mathematics Volume 10, Issue 3, 6144-6167.
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methods could serve as alternatives to the Landweber iteration method when high precision and
stability are not strictly required. Alternatively, improvements can be sought to enhance accuracy
while preserving efficiency—such as determining appropriate regularization parameters [27].
Meanwhile, accelerating the Landweber iteration method presents another viable direction for
boosting computational speed. Accelerated Landweber iteration could focus on three primary
strategies: optimizing the iteration scheme [28], developing effective preconditioning techniques [29],
and implementing adaptive weight adjustment strategies [30]. These methods achieved more
efficient results than the Tikhonov regularization and conjugate gradient methods. Future research
should focus on developing high-accuracy and high-efficiency solution methods.
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