Research article

Extropy analysis in consecutive r-out-of-n:G systems with applications in reliability and exponentiality testing

  • Published: 18 March 2025
  • MSC : 62N05, 94A17

  • This study explores the extropy of consecutive r-out-of-n:G systems, offering a detailed framework for theoretical analysis and practical applications. Exact expressions for system lifetime extropy are derived, with comparative evaluations across diverse lifetime distributions. Theoretical contributions include bounds, characterization results, and insights into the variability of extropy. Practically, a nonparametric extropy estimator is introduced and validated through simulations and image processing applications. A novel test statistic for exponentiality is also proposed, with the critical values computed numerically and the performance assessed against alternative distributions. The results highlight the test's superior efficacy in specific contexts while noting its limitations. This work combines theoretical and practical advances, providing valuable tools for reliability analysis and statistical inference.

    Citation: Faten Alrewely, Mohamed Kayid. Extropy analysis in consecutive r-out-of-n:G systems with applications in reliability and exponentiality testing[J]. AIMS Mathematics, 2025, 10(3): 6040-6068. doi: 10.3934/math.2025276

    Related Papers:

  • This study explores the extropy of consecutive r-out-of-n:G systems, offering a detailed framework for theoretical analysis and practical applications. Exact expressions for system lifetime extropy are derived, with comparative evaluations across diverse lifetime distributions. Theoretical contributions include bounds, characterization results, and insights into the variability of extropy. Practically, a nonparametric extropy estimator is introduced and validated through simulations and image processing applications. A novel test statistic for exponentiality is also proposed, with the critical values computed numerically and the performance assessed against alternative distributions. The results highlight the test's superior efficacy in specific contexts while noting its limitations. This work combines theoretical and practical advances, providing valuable tools for reliability analysis and statistical inference.



    加载中


    [1] C. E. Shannon, A mathematical theory of communication, Bell System Technical Journal, 27 (1948), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x doi: 10.1002/j.1538-7305.1948.tb01338.x
    [2] A. Zellner, Bayesian methods and entropy in economics and econometrics, In: Maximum entropy and Bayesian methods, Dordrecht: Springer, 1991, 17–31. https://doi.org/10.1007/978-94-011-3460-6_2
    [3] N. Ebrahimi, N. Y. Jalali, E. S. Soofi, R. Soyer, Importance of components for a system, Economet. Rev., 33 (2014), 395–420. https://doi.org/10.1080/07474938.2013.807652 doi: 10.1080/07474938.2013.807652
    [4] M. Asadi, N. Ebrahimi, E. Soofi, Y. Zohrevand, Jensen-Shannon information of the coherent system lifetime, Reliab. Eng. Syst. Safe., 156 (2016), 244–255. https://doi.org/10.1016/j.ress.2016.07.015 doi: 10.1016/j.ress.2016.07.015
    [5] F. Lad, G. Sanfilippo, G. Agro, Extropy: complementary dual of entropy, Statist. Sci., 30 (2015), 40–58. https://doi.org/10.1214/14-STS430 doi: 10.1214/14-STS430
    [6] A. Toomaj, M. Hashempour, N. Balakrishnan, Extropy: characterizations and dynamic versions, J. Appl. Probab., 60 (2023), 1333–1351. https://doi.org/10.1017/jpr.2023.7 doi: 10.1017/jpr.2023.7
    [7] G. Agro, F. Lad, G. Sanfilippo, Sequentially forecasting economic indices using mixture linear combinations of EP distributions, Journal of Data Science, 8 (2010), 101–126. https://doi.org/10.6339/JDS.2010.08(1).473 doi: 10.6339/JDS.2010.08(1).473
    [8] A. Capotorti, G. Regoli, F. Vattari, Correction of incoherent conditional probability assessments, Int. J. Approx. Reason., 51 (2010), 718–727. https://doi.org/10.1016/j.ijar.2010.02.002 doi: 10.1016/j.ijar.2010.02.002
    [9] T. Gneiting, A. E. Raftery, Strictly proper scoring rules, prediction, and estimation, J. Am. Stat. Assoc., 102 (2007), 359–378. https://doi.org/10.1198/016214506000001437 doi: 10.1198/016214506000001437
    [10] A. E. Gera, A consecutive k-out-of-n:G system with dependent elements—a matrix formulation and solution, Reliab. Eng. Syst. Safe., 68 (2000), 61–67. https://doi.org/10.1016/S0951-8320(00)00005-3 doi: 10.1016/S0951-8320(00)00005-3
    [11] G. Chang, L. Cui, F. Hwang, Reliabilities of consecutive-k systems, New York: Springer, 2000. https://doi.org/10.1007/978-1-4613-0273-5
    [12] P. J. Boland, F. J. Samaniego, Stochastic ordering results for consecutive k-out-of-n:F systems, IEEE Trans. Reliab., 53 (2004), 7–10. https://doi.org/10.1109/TR.2004.824830 doi: 10.1109/TR.2004.824830
    [13] S. Eryılmaz, Mixture representations for the reliability of consecutive-k systems, Math. Comput. Model., 51 (2010), 405–412. https://doi.org/10.1016/j.mcm.2009.12.007 doi: 10.1016/j.mcm.2009.12.007
    [14] S. Eryılmaz, Conditional lifetimes of consecutive k-out-of-n systems, IEEE Trans. Reliab., 59 (2010), 178–182. https://doi.org/10.1109/TR.2010.2040775 doi: 10.1109/TR.2010.2040775
    [15] K. Jung, H. Kim, Linear consecutive k-out-of-n:F system reliability with common-mode forced outages, Reliab. Eng. Syst. Safe., 41 (1993), 49–55. https://doi.org/10.1016/0951-8320(93)90017-S doi: 10.1016/0951-8320(93)90017-S
    [16] J. Shen, M. J. Zuo, Optimal design of series consecutive k-out-of-n:G systems, Reliab. Eng. Syst. Safe., 45 (1994), 277–283. https://doi.org/10.1016/0951-8320(94)90144-9 doi: 10.1016/0951-8320(94)90144-9
    [17] W. Kuo, M. J. Zuo, Optimal reliability modeling: principles and applications, Hoboken: John Wiley & Sons, 2003.
    [18] K. M. Wong, S. Chen, The entropy of ordered sequences and order statistics, IEEE Trans. Inform. Theory, 36 (1990), 276–284. https://doi.org/10.1109/18.52473 doi: 10.1109/18.52473
    [19] S. Park, The entropy of consecutive order statistics, IEEE Trans. Inform. Theory, 41 (1995), 2003–2007. https://doi.org/10.1109/18.476325 doi: 10.1109/18.476325
    [20] N. Ebrahimi, E. S. Soofi, R. Soyer, Information measures in perspective, Int. Stat. Rev., 78 (2010), 383–412. https://doi.org/10.1111/j.1751-5823.2010.00105.x doi: 10.1111/j.1751-5823.2010.00105.x
    [21] G. Qiu, The extropy of order statistics and record values, Stat. Probabil. Lett., 120 (2017), 52–60. https://doi.org/10.1016/j.spl.2016.09.016 doi: 10.1016/j.spl.2016.09.016
    [22] G. Qiu, K. Jia, Extropy estimators with applications in testing uniformity, J. Nonparametr. Stat., 30 (2018), 182–196. https://doi.org/10.1080/10485252.2017.1404063 doi: 10.1080/10485252.2017.1404063
    [23] G. Qiu, K. Jia, The residual extropy of order statistics, Stat. Probabil. Lett., 133 (2018), 15–22. https://doi.org/10.1016/j.spl.2017.09.014 doi: 10.1016/j.spl.2017.09.014
    [24] M. Kayid, M. A. Alshehri, System level extropy of the past life of a coherent system, J. Math., 2023 (2023), 9912509. https://doi.org/10.1155/2023/9912509 doi: 10.1155/2023/9912509
    [25] M. Shrahili, M. Kayid, Excess lifetime extropy of order statistics, Axioms, 12 (2023), 1024. https://doi.org/10.3390/axioms12111024 doi: 10.3390/axioms12111024
    [26] M. Shrahili, M. Kayid, M. Mesfioui, Stochastic inequalities involving past extropy of order statistics and past extropy of record values, AIMS Mathematics, 9 (2024), 5827–5849. https://doi.org/10.3934/math.2024283 doi: 10.3934/math.2024283
    [27] J. Navarro, Y. del Águila, M. A. Sordo, A. Suárez-Llorens, Stochastic ordering properties for systems with dependent identically distributed components, Appl. Stoch. Model. Bus., 29 (2013), 264–278. https://doi.org/10.1002/asmb.1917 doi: 10.1002/asmb.1917
    [28] J. Navarro, Y. del Águila, M. A. Sordo, A. Suárez-Llorens, Preservation of reliability classes under the formation of coherent systems, Appl. Stoch. Model. Bus., 30 (2014), 444–454. https://doi.org/10.1002/asmb.1985 doi: 10.1002/asmb.1985
    [29] S. Eryılmaz, Reliability properties of consecutive k-out-of-n systems of arbitrarily dependent components, Reliab. Eng. Syst. Safe., 94 (2009), 350–356. https://doi.org/10.1016/j.ress.2008.03.027 doi: 10.1016/j.ress.2008.03.027
    [30] I. Bagai, S. C. Kochar, On tail-ordering and comparison of failure rates, Commun. Stat.-Theor. M., 15 (1986), 1377–1388. https://doi.org/10.1080/03610928608829189 doi: 10.1080/03610928608829189
    [31] J. Navarro, Y. del Águila, M. A. Sordo, A. Suárez-Llorens, Stochastic ordering properties for systems with dependent identically distributed components, Appl. Stoch. Model. Bus., 29 (2013), 264–278. https://doi.org/10.1002/asmb.1917 doi: 10.1002/asmb.1917
    [32] J. Navarro, Y. del Águila, M. A. Sordo, A. Suárez-Llorens, Preservation of reliability classes under the formation of coherent systems, Appl. Stoch. Model. Bus., 30 (2014), 444–454. https://doi.org/10.1002/asmb.1985 doi: 10.1002/asmb.1985
    [33] J. Navarro, S. Eryılmaz, Mean residual lifetimes of consecutive k-out-of-n systems, J. Appl. Probab., 44 (2007), 82–98. https://doi.org/10.1239/jap/1175267165 doi: 10.1239/jap/1175267165
    [34] M. Hashempour, M. Mohammadi, A new measure of inaccuracy for record statistics based on extropy, Probab. Eng. Inform. Sci., 38 (2024), 207–225. https://doi.org/10.1017/S0269964823000086 doi: 10.1017/S0269964823000086
    [35] U. Kamps, Characterizations of distributions by recurrence relations and identities for moments of order statistics, Handbook of Statistics, 16 (1998), 291–311. https://doi.org/10.1016/S0169-7161(98)16012-1 doi: 10.1016/S0169-7161(98)16012-1
    [36] O. Vasicek, A test for normality based on sample entropy, J. R. Stat. Soc. Ser. B, 38 (1976), 54–59. https://doi.org/10.1111/j.2517-6161.1976.tb01566.x doi: 10.1111/j.2517-6161.1976.tb01566.x
    [37] M. Rao, Y. Chen, B. C. Vemuri, F. Wang, Cumulative residual entropy: a new measure of information, IEEE Trans. Inform. Theory, 50 (2004), 1220–1228. https://doi.org/10.1109/TIT.2004.828057 doi: 10.1109/TIT.2004.828057
    [38] S. Tahmasebi, A. Keshavarz, M. Longobardi, R. Mohammadi, A shift-dependent measure of extended cumulative entropy and its applications in blind image quality assessment, Symmetry, 12 (2020), 316. https://doi.org/10.3390/sym12020316 doi: 10.3390/sym12020316
    [39] A. Toomaj, H. Atabay, Some new findings on the cumulative residual Tsallis entropy, J. Comput. Appl. Math., 400 (2022), 113669. https://doi.org/10.1016/j.cam.2021.113669 doi: 10.1016/j.cam.2021.113669
    [40] A. Toomaj, Generalized cumulative residual Tsallis entropy and its properties, Comp. Appl. Math., 42 (2023), 330. https://doi.org/10.1007/s40314-023-02455-y doi: 10.1007/s40314-023-02455-y
    [41] P. Xiong, W. Zhuang, G. Qiu, Testing exponentiality based on the extropy of record values, J. Appl. Stat., 49 (2022), 782–802. https://doi.org/10.1080/02664763.2020.1840535 doi: 10.1080/02664763.2020.1840535
    [42] J. Jose, E. Sathar, Characterization of exponential distribution using extropy based on lower k-records and its application in testing exponentiality, J. Comput. Appl. Math., 402 (2022), 113816. https://doi.org/10.1016/j.cam.2021.113816 doi: 10.1016/j.cam.2021.113816
    [43] S. Park, A goodness-of-fit test for normality based on the sample entropy of order statistics, Stat. Probabil. Lett., 44 (1999), 359–363. https://doi.org/10.1016/S0167-7152(99)00027-9 doi: 10.1016/S0167-7152(99)00027-9
    [44] N. Ebrahimi, K. Pflughoeft, E. S. Soofi, Two measures of sample entropy, Stat. Probabil. Lett., 20 (1994), 225–234. https://doi.org/10.1016/0167-7152(94)90046-9 doi: 10.1016/0167-7152(94)90046-9
    [45] J. Fortiana, A. Grané, A scale-free goodness-of-fit statistic for the exponential distribution based on maximum correlations, J. Stat. Plan. Infer., 108 (2002), 85–97. https://doi.org/10.1016/S0378-3758(02)00272-0 doi: 10.1016/S0378-3758(02)00272-0
    [46] B. Choi, K. Kim, S. Song, Goodness-of-fit test for exponentiality based on Kullback-Leibler information, Commun. Stat.-Simul. C., 33 (2004), 525–536. https://doi.org/10.1081/SAC-120037250 doi: 10.1081/SAC-120037250
    [47] N. Mimoto, R. Zitikis, The Atkinson index, the Moran statistic, and testing exponentiality, Journal of the Japan Statistical Society, 38 (2008), 187–205. https://doi.org/10.5681/jjss.38.187 doi: 10.5681/jjss.38.187
    [48] K. Volkova, On asymptotic efficiency of exponentiality tests based on Rossberg's characterization, J. Math. Sci., 167 (2010), 486–494. https://doi.org/10.1007/s10958-010-9934-9 doi: 10.1007/s10958-010-9934-9
    [49] E. Zamanzade, N. Arghami, Goodness-of-fit test based on correcting moments of modified entropy estimator, J. Stat. Comput. Sim., 81 (2011), 2077–2093. https://doi.org/10.1080/00949655.2010.517533 doi: 10.1080/00949655.2010.517533
    [50] S. Baratpour, A. Habibi Rad, Testing goodness-of-fit for exponential distribution based on cumulative residual entropy, Commun. Stat.-Theor. M., 41 (2012), 1387–1396. https://doi.org/10.1080/03610926.2010.542857 doi: 10.1080/03610926.2010.542857
    [51] H. Noughabi, N. Arghami, Goodness-of-fit tests based on correcting moments of entropy estimators, Commun. Stat.-Simul. C., 42 (2013), 499–513. https://doi.org/10.1080/03610918.2011.634535 doi: 10.1080/03610918.2011.634535
    [52] K. Y. Volkova, Y. Y. Nikitin, Exponentiality tests based on Ahsanullah's characterization and their efficiency, J. Math. Sci., 204 (2015), 42–54. https://doi.org/10.1007/s10958-014-2185-4 doi: 10.1007/s10958-014-2185-4
    [53] H. Torabi, N. H. Montazeri, A. Grané, A wide review on exponentiality tests and two competitive proposals with application on reliability, J. Stat. Comput. Sim., 88 (2018), 108–139. https://doi.org/10.1080/00949655.2017.1379522 doi: 10.1080/00949655.2017.1379522
    [54] F. Proschan, Theoretical explanation of observed decreasing failure rate, Technometrics, 5 (1963), 375–383. https://doi.org/10.1080/00401706.1963.10490105 doi: 10.1080/00401706.1963.10490105
    [55] J. F. Lawless, Statistical models and methods for lifetime data, Hoboken: John Wiley & Sons, 2002. https://doi.org/10.1002/9781118033005
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1032) PDF downloads(63) Cited by(1)

Article outline

Figures and Tables

Figures(4)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog