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Abstract: This study explores the extropy of consecutive r-out-of-n:G systems, offering a detailed
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1. Introduction

The quantification of uncertainty in probability distributions is fundamental to information
theory. Among its most important measures, Shannon's entropy [1] stands out. Entropy for a
continuous random variable X, characterized by a probability density function (PDF) h(x), is
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calculated as E[—log h(X)], assuming that the expectation is well-defined. Entropy measures the
deviation from a uniform distribution. Since the uniform distribution represents the least
concentrated distribution, entropy quantifies the concentration of f and thus the unpredictability of
the system in terms of X. Zellner [2], an advocate for information-theoretic approaches, made
significant contributions to integrating information and Bayesian methods, inspiring many to explore
these techniques. For instance, Ebrahimi et al. [3] examined the relationship between reliability and
econometrics by introducing an information relationship between a system and its components by
using Shannon entropy. This approach is particularly useful for ranking the importance of
components on the basis of their information’s dependence on the operational status or lifespan of
the system. Asadi et al. [4] introduced the Jensen-Shannon information criteria for comparing
systems on the basis of the complexity of the system. This scalar function of the signature ranks
systems based on their design. It quantifies the remaining uncertainty about the system’s lifetime,
the dependency between lifetime and component failures, and applies Bayesian decision theory.
These results prompted us to explore uncertainty measures as valuable tools in reliability and
engineering systems. Extropy, the mirror image of entropy, was recently introduced by Lad et al. [5]
as a complementary measure of uncertainty. Extropy, denoted as J(X), for a non-negative random
variable X with a PDF h(x) and a cumulative distribution function (CDF) H(x), is expressed as
follows:

JX) = =3[ R*(x)dx = =S E[R(H™I(U))], (1)

where U is a uniform random variable on the interval [0,1], H™(u) = inf{x: H(x) > u}, u €
[0,1], signifies the quantile function of H, and E(-) means the expectation. Similar to entropy,
extropy measures the deviation from a uniform distribution and quantifies the concentration of f,
thereby gauging the unpredictability of the system in terms of X. While entropy and extropy quantify
the uncertainty, the lack of a simple relationship between orderings of a distribution by the two
measures arises from some substantial and subtle differences. For example, the differential entropy
takes values in [—oo, 0] while extropy takes values in [—oo,0); for more details, see Toomaj
etal. [6]. A significant statistical use of extropy lies in assessing predictive distributions through the
total logarithmic scoring rule. Readers seeking a deeper understanding will find comprehensive
insights in the work of Agro et al. [7], Capotorti et al. [8], and Gneiting and Raftery [9]. An alternative
and valuable representation for the extropy by using (1) can be written as

J(X) = —<E[A(X12)], )

where A(x) = h(x)/S(x) represents the hazard rate function, S(x) = P(X > x) is the reliability
function of X, and X;, follows a PDF given by Toomaj et al. [6]:

fi2(x) = 2h(x)S(x), x > 0. 3)

The aim of this paper was to investigate the properties of extropy in a linear consecutive r-out-
of-n:G system and apply them to testing for exponentiality. A linear consecutive r-out-of-n:G system
is a system that comprises n independent and identically distributed (iid) components arranged in a
linear configuration, where the system operates successfully if and only if at least r consecutive
components remain functional. These systems are used in communication systems, road parking
AIMS Mathematics Volume 10, Issue 3, 6040-6068.
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plans, and oil pipeline networks. Consecutive n-out-of-n:G systems represent series systems, while
consecutive 1-out-of-n:G systems correspond to parallel systems, both of which are crucial for
reliability modeling. Fundamental works in this field include Gera [10], Chang et al. [11], Boland
and Samaniego [12] and Eryilmaz [13,14]. In addition, studies such as [15-17] investigated different
configurations of consecutive r-out-of-n systems and emphasized their relevance in real-world
scenarios. Research on the information properties of ordered data has been extensively explored, as
evidenced by the work in [18-20]. Recently, extropy has gained prominence as a key metric for
measuring uncertainty. Fundamental contributions in this field include the work of Qiu [21] and Qiu
and Jia [22,23]. Subsequent studies by Kayid and Alshehri [24] investigated the extropy of past
lifetimes in coherent systems, including cases where all components remain inactive within a given
timeframe. Shrahili and Kayid [25] studied the residul extropy of order statistics, while Shrahili
et al. [26] made further progress in this area. Building on these fundamental studies, the present
work aimed to deepen the understanding of extropy by investigating its properties and behavior
specifically in the context of consecutive r-out-of-n:G systems.

While previous research has examined the extropy of order statistics and record values, its
properties in consecutive systems remain largely unexplored. This study addresses this gap by
investigating the extropy of such systems. Specifically, we leverage extropy’s computational
advantages over other information measures, such as Shannon entropy, to facilitate more tractable
computations for consecutive systems, even with complex distribution functions. This enhancement
makes our approach both practical and widely applicable. Furthermore, while prior studies, such as
Navarro et al. [27,28], have explored the preservation of dispersive order and reliability properties
in coherent systems, our work extends these findings by introducing extropy as a complementary
measure for assessing uncertainty in consecutive r-out-of-n:G systems. In particular, we establish
new results on the preservation of aging properties and stochastic orders in the context of extropy,
providing insights beyond classical entropy-based approaches. These contributions bridge the gap
between stochastic order theory and information measures, offering a novel perspective on systems’
reliability. The applicability of our results is demonstrated through an image processing example,
where the proposed extropy-based estimator is used to assess uncertainty in grayscale image
distributions.

The structure of this paper is organized as follows: in Section 2, we introduce a formulation for
the extropy of Tmng, the lifetime of the consecutive system, assuming a general continuous
distribution function H. This representation is expressed as the extropy of such systems when the
underlying distribution is uniform, establishing a link between the extropy measures in different
distribution constellations. Deriving explicit formulas for the extropy of order statistics is often
challenging across various statistical frameworks. To solve this problem, some bounds are derived
in Section 3. Section 4 focuses on the characterization of the extropy for consecutive systems, where
the main results are presented. In particular, the exponential distribution is characterized in this
context. To substantiate the theoretical developments, the computational results are presented in
Section 5. In this section, a nonparametric estimator for the extropy of consecutive systems is
introduced, and its application in image processing is presented as an example of its practical
implementation. Furthermore, a novel test statistic for exponentiality is proposed, and its critical
values are determined numerically. The validity of this test is evaluated against a number of
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alternative distributions. Finally, Section 6 summarizes the main results and contributions, and
highlights their importance in both theoretical and applied contexts.

2. Extropy of consecutive r-out-of-n:G systems

Hereafter, we focus on deriving an expression for the extropy associated with consecutive r-
out-of-n:G systems. Assume that X;,X,,--+,X,, represent the iid component lifetimes within the
systems, where each follows the same h(x), H(x), and reliability function S(x). The lifetime of the
overall system is represented by Trn:c. Eryilmaz [29] showed that the system's reliability function
can be formulated as follows when 2r > n:

Seinc(@®) = P(Typig > t) =(n—r+ DS™(t) — (n —1)STH(¢), t > 0.

It follows that
Rypnc(@®) =r(n —71 + DSTH(OA(E) — (r + D(n —r)ST(O)A(L) 4)
= (Tl -r+ 1)h1:r(t) - (Tl - r)hl:r+1(t)' t> 0! (5)

where hy.;(t) is the PDF of the series system with a lifetime X;.; = min(Xy,---,X;). In the
subsequent paragraphs,we derive a formulae for extropy T, by utilizing the probability integral
transformation Uyj,.¢ = H(Tyn.c). It is established that the transformed components of the system,
defined as U; = H(X;) for i =1, ...,n, are iid random variables with a uniform distribution. For
2r 2n and 0 <wu < 1, the probability density function of U, ,.c is given by

Irine@) =r(n—-r+HA - -+ DO - -u). (6)

On the basis of the previously introduced transformations, we now present the following
theorem.

Theorem 2.1. For 2r = n, the extropy of T, can be expressed as follows:

1,1 -
J(Trin:c) = =3 Jy 9Fmc WhH™ (w))du, (7)
where g,n.q(w) is given by (6).
To illustrate (7), we provide the following example.
Example 2.1. Consider
Tr|n:G = maX(Xl:r)XZ:r+1' ---:Xn—r+1:n)’
where Xj.,, = min(Xj, ..., X;;,) for 1 <j <m <n, as the lifetime of a linear consecutive r-out-
of-n:G system. Assume that the component lifetimes are iid with a common CDF defined as
Hx)=1-e*"x>0,foralla > 0. (8)
It should be noted that Eq (8) represents the cumulative distribution function of a Weibull
random variable, with a shape parameter o > 0 and a unit scale parameter. It can be observed that
a—1
h(H 1(w)) = a(1 —u)(-log(1 —u))«, 0 <u < 1. From Eq (7),
AIMS Mathematics Volume 10, Issue 3, 6040-6068.
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ITmc) = =2 f} 92me (A —w)(~log(1 —w)' du.

Numerical methods are used to study the relationship between the entropy of J(Tyn.c) and
the shape parameter «a, since it is inherently difficult to obtain an explicit expression. The analysis
focuses on consecutive r-out-of-10:G systems, where r is between 6 and 10. As shown in Figure 1,
the extropy of the system initially increases with a and reaches a peak value before decreasing for
a > 1. Theresults for 0 < @ < 1 are not shown due to the divergence of the integral. The findings
emphasize the notable impact of the shape parameter on the system's extropy. Furthermore, no
correlation is observed between the monotonicity of the extropy and the number of functioning
components.

5 10
o

—r=10 —r=6 — r=7 — r=8 — r=9

Figure 1. Example 2.1 illustrates J(Trn.) as a function of a for different values of
r =6,7,8,9,10, with n = 10.

Let us consider X and Y with the PDFs hyx(x) and hy(x), and the reliability functions
Sy(x) and Sy (x), respectively. Recall that X is considered to be smaller than Y in the dispersive
order, expressed as X <g;q, Y, if

hx (Hx' () 2 hy (Hy ' (v)) 9)

holds for all 0 < v < 1. Inaddition, X is said to have the decreasing failure rate (DFR) property if
the ratio hy(x)/Sx(x) decreases with x > 0. For further details, we direct the reader to the
comprehensive work of Bagai and Kochar [30]. Based on the expression in Eq (7), the following
theorem is derived. Hereafter, we use Cy to denote the class of all consecutive r-out-of-n:G
systems with a lifetime T,X . consisting of n iid components with the CDF Hy and the PDF hy.

rin:G

Theorem 2.2. Assume that TJf,.c € Cx and T}, € Cy. If X <g;sp Y, then J(Thn6) < J(Tnc)
for 2r > n.

It is worth noting that the above results can be derived by applying Part (i) of Theorem 2.9 from
Navarro et al. [31], along with the observation that the disperive order implies the extropy order in
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the sense that T,.c <aisp Trinc Yields J(THn.c) < I(Tjnc)- For further details on the results

related to stochastic orders and the preservation properties of coherent and mixed systems, we refer
the readers to Navarro et al. [32]. Before introducing the next corollary, we first present the following
lemma from Bagai and Kochar [30].

Lemma 2.1. For the random variables X and Y, if X <, Y and either X or Y has a DFR, then
X <gisp Y-

The following corollary can be derived from the lemma above and Theorem 2.2.

Corollary 2.1. Under the assumptions of Theorem 2.2, if X <;,, Y and either X or Y has a DFR,
then J(TI?TH:G) = J(TJHG)

The following example illustrates Corollary 2.1.

Example 2.2. Define Tr’fn:G = max(min(X;, X,), min(X,, X3)) as the lifetime of a consecutive 2-

out-of-3:G system, where the iid components’ lifetimes {X;, X,, X5} follow a Makeham distribution
with the reliability function Sy(x) = e *"2@+e™*-1) for x >0 and a > 0. Moreover, let
Try|n;c = max(min(Yy, ¥;), min(Y,, Y3)) Dbe the lifetime of a consecutive 2-out-of-3:G system
having iid component lifetimes {Y;,Y,, Y5} following an exponential distribution with the reliability
function Sy(x) = e™, where x > 0. It is not hard to see that the hazard rate function of X is
Ax(x) =1+ a(1l —e™™), while the hazard rate function of Y is Ay(x) = 1. It can be shown that
X <Y for a>0, and Y has a DFR. As a consequence, Corollary 2.1 becomes applicable,
implying that J(T,..c) < J(TYn.c)-

The next theorem demonstrates that for consecutive r-out-of-n:G systems where the
components’ lifetime has a DFR, the series system achieves the lowest extropy.

Theorem 2.3. Assume that Ty, € Cx such that X has a DFR. Under the condition 2r = n, the
following statements then hold:

(l) J(Xl:n) < J(Tr|n:G)-

(") J(Xl:r) = J(Tr|n:6)-

Proof. (i) It is evident that the function

Sr|n:G (t)
Sl:n(t)

is increasing in t for all 1 <r <mn, indicating that X;., <p, Tyn.c. Furthermore, if X exhibits
the DFR property, then it follows that X;., also possesses the DFR property. By applying
Lemma 2.1, we conclude that X;., <gisp Trn:c- This relationship implies that J(X;.,) < J(Trm:a),
since X <g4;5p Y entails J(X) < J(¥).

(ii) According to the findings presented in Proposition 3.2 of Navarro and Eryilmaz [33], it can
be inferred that X,.. <j, Tyn.c. Consequently, employing analogous reasoning to that employed in
Part (i) leads to the acquisition of similar results. m

= ST()(1 + (n — 1)H (L))

We proceed to extend Theorem 2.3, addressing cases where the number of systems and their
respective component lifetimes are not necessarily identical.

AIMS Mathematics Volume 10, Issue 3, 6040-6068.
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Theorem 2.4. Assume that X;., € Cx and Tr§|{n2:G € Cy forall 2r > n,, and n; # n,. If X has a
DFR and X <gisp Y, then J(Xin,) < J(Tn,c) forall 2r=n, suchthat 1 <r < min(ny,ny).

Proof. Assume that Tr)l(nZ:G € Cx for 2r = n,. Itis clear that the function

Sr|n2:G(t)
Sl'nl(t)
is increasing in t for all 1<r<min(n,n,) with n; #n, . This indicates that
Xin, <nr Terz:G. Following the approach in the proof of Theorem 2.3, we can conclude that
Xin, <daisp T, Since X has a DFR, which implies that J(Xy.,,) < J(T/,,.¢) for 2r = n,.

=S5O0+ (np —r)H(®))

|n2:G
Furthermore, the assumption X <g;5, ¥ leads to J(T/,,.c) < J(Th,,.¢) according to
Theorem 2.2. By combining these results, we complete the proof. m

3. Bounds on the extropy of consecutive systems

Obtaining explicit expressions for the extropy of consecutive systems poses significant
computational challenges, particularly for systems with many components or intricate lifetime
distributions. In such cases, bounding techniques provide a practical and efficient alternative for
characterizing the extropy of these systems. This section examines the use of bounding techniques
to analyze the extropy of these systems. A theorem is presented that establishes explicit bounds on
the extropy, supported by a concise and rigorous proof. These findings provide valuable insights into
the behavior of the extropy and enable its application in scenarios where analytical solutions are
impractical.

Theorem 3.1. Let T/X,.; € Cyx.
(i) If M = h(m) < o, where m = sup{x: h(x) < M} designates the mode of the PDF h, for
2r = n, we have J(Trm:G) = MJ(UT|TL:G)'

(if) For 2r > n, we have
B*J(X) 2 J(Trn) = D2J(X),

where B = infv(E(O,l)gr|n:G (v) and D = SUPye(0,1)Ir|n:G ().

Theorem 3.1(i) provides a lower bound for the extropy of Trn:c by utilizing J(Uyjn.) and the
mode of the original distribution.

Part (ii) of Theorem 3.1 provides bounds on Trn:c With respect to the extropy of each component
under certain conditions. These bounds are further illustrated by analyzing consecutive r-out-of-n:G
systems with Weibull-distributed components.

Example 3.1. Consider a linear consecutive 6-out-of-10:G system with the lifetime Tg19.c =

max(Xy.¢, X2.7, ..., Xs5.10), Where X;., = min(Xj, ..., X;;,) for 1 <j <m < 10. For this analysis,

it is assumed that X~W(a,1) , as defined in (8). We can easily verify that B =

infye(0,1)96j10.6(W) =0 and D = supye(o,1)9s|10:6 (W) = 2.837134. Furthermore, it is apparent
1

that J(Ugj10.6) = —1.062937. Notably, the mode of X is given by m = (“7_1); Consequently,
we can establish lower bounds for J(T|10.c) based on Theorem 3.1. Specifically, the lower bounds
are given for X and m, respectively, by

AIMS Mathematics Volume 10, Issue 3, 6040-6068.
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J(Tejr0:6) = 8.049331J(X),
and

I(Tsjr0.¢) = —1.062937h(m),

azér(z—é) 1\t _a-1

where J(X) = — for a >% and h(m) = a( ) “ e "a for a > 0.One can see that

a
Part (i) of Theorem 3.1 does not exist when 0 < a < % As illustrated in Figure 2, the lower bound
from Part (i) of Theorem 3.1 is higher than that of Part (ii). Additionally, the figure indicates a

decreasing trend for both lower bounds as « increases.

(M6, 106))
r

Figure 2. Extropy of a 6-out-of-10:G system having Weibull component lifetimes:
exact bounds (solid line), and bounds of parts (i) (dotted line) and (ii) (dashed line), as
given in Theorem 3.1.

Unlike Theorem 3.1, this section introduces further bounds on the extropy of consecutive r-out-
of-n:G systems’ lifetimes, derived using the extropy and imprecision associated with a series of
system lifetimes. First, let us recall the concept of the inaccuracy measure based on extropy as
follows (see Hashempour and Mohammadi [34]).

JXY) = =2 [7 hy()hy (X)dx,
where hy and hy, denote the PDFs of X and Y, respectively.
Theorem 3.2. Let Tr)|(n:G € Cx. Then the following inequality holds:
IJTrme) =2 (M =1+ 1)2J K1) + (0 = 1)2T Xi41),
which is valid for 2r > n.

Proof. Another useful representation based on the relations in (5) is as follows:

AIMS Mathematics Volume 10, Issue 3, 6040-6068.
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1 ° 2 1 ! 2
ITine) = =3 | Wina(®de = =5 [ (0 =7+ Dhip(®) = (0= iy 0
= (Tl —-r+ 1)2J(X1:r) + (n - r)ZJ(Xl:r+1) - (n —-r+ 1)(n - r)J(Xl:rX1:r+1)l

where

1 co
IKarkirn) = =5 [ ar©hopa (e
0

represents the inaccuracy measure of h,..(x) relative to h,..,,(x) or vice versa. Since
JX14X1.741) <0, Onecanseethat —(n —r + 1)(n — r)J(X1.,X1.-+1) = 0, and hence the lower
bound is easily obtained. This completes the proof.
O
In the next theorem, we establish bounds for consecutive r-out-of-n:G systems that relate to the
hazard rate function of the components’ lifetimes.

Theorem 3.3. Let Ty, represent the lifetime of a consecutive r-out-of-n:G system, where the
components’ lifetimes X;,X,, -+, X, follow a common failure rate function A(x). For all 2r > n,
we have

2r—n

~SEA(T ) < I Trpna) < — = BA(T6)),

where T/j% hasthe PDF hif.(x) = 2hyjn.c(X)Senc(x) forall x > 0.

Proof. Note that
/1r|n:G (x) = lpr,n(s(x))/l(x),

where

r(n-r+1)—(r+1)(n-r)z
(n-r+1)-(n-r)z

Yrn(2) = , 0<z<1.

Given that ¥,,,'(z) <0 for 2r > n and 0 < z < 1, it follows that 1, ,,(z) is identified as
amonotonically decreasing function of z. Giventhat 1, ,(0) =r and v, ,(1) = 2r —n, we have
2r =n < P, (S(x)) <7 for 0 < H(x) <1, which implies that 2r — nA(x) < A, n.c(S(x)) <
rA(x), for x > 0. Combining this result with the relationship between extropy and the hazard rate
(as defined in Eq (2)) completes the proof. O

Let us consider an illustrative example for the preceding theorem.
Example 3.2. We now analyze a linear consecutive 2-out-of-3:G system characterized by its lifetime
T2|3ZG = maX(min(Xl, Xz), min(Xz, X3)),

where X; is iid, following an exponential distribution with the CDF H(x) = 1 — e™** for x > 0.
The exponential distribution exhibits a constant hazard rate, A(x) = A, which implies that
E(A(T35.¢)) = A. Applying Theorem 3.3 yields the following bounds on the extropy of the system
—0.51 < J(T33:6) < —0.254. We note that the exact value is J(Ty3.¢) = —0.354.

The next theorem holds, provided that the expected value of the squared hazard rate function
for X is finite.

AIMS Mathematics Volume 10, Issue 3, 6040-6068.
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Theorem 3.4. Given the conditions in Theorem 3.3, where E(A%(X)) < oo, for 2r > n, it holds that
I(Trinie) = =5 n B2 (X)),
where Q. = [ (1 = ¥)2gH .6 (V) dv.

Proof. The PDF of T,,.c can be rewritten as hyn.q(x) = h(x)grpm.c(H(x)), while its failure rate
function is given by
S(X)Grin:c(H(x))
Armig (%) = A(x) ===,

Sr|n:G(x)

for x > 0. Consequently, by (2) and using the Cauchy - Schwarz inequality, we obtain

J /1r|n:G(x)hrm:G(x)SHn:G(x)dx = f A(x)\/ h(x)y h(x)s(x)g72-|n:G(H(x))dx
0 0
1

< (JOOO /12(9c)h(x)dx>E (J:O (S(x)gfln:G (H(x)))2 h(x)dx)

N~

1
1/ 2
= (E(2*(0)))? ( f (1- v)zg;ﬂn:c(v)dv) .
0
This equality arises from the variable substitution v = H(x), completing the proof. o

4. Results of characterization

This section focuses on the characterization of extropy in consecutive r-out-of-n:G systems,
starting with a lemma based on the Muntz-Sz&z Theorem, as referenced in Kamps [35].

Lemma 4.1. If Y(x) is an integrable function on the finite interval (a,b) and fab xMP(x)dx =
0 forj = 1, it follows that yi(x) = 0 almost everywhere in (a,b), where {n;, j = 1} represents a
strictly increasing sequence of positive integers with .2, ni = o0,
]
It is important to note that Lemma 4.1 is a well-established result in functional analysis,
asserting that the set {x™:,x"2,...;1 <n, <n, < ---} constitutes a complete sequence. Notably,

Hwang and Lin [36] extended the scope of the Mintz-Sz&z Theorem to the functions {¢™i(x),
n; = 1}, where ¢(x) is both absolutely continuous and monotonic over the interval (a, b).

Theorem 4.1. Let Tr’fn:G and Tr‘l(n:G be the lifetimes of two consecutive r-out-of-n:G systems

consisting of n iid component lifetimes with the common PDFs hy(x) and hy(x) and the CDFs
Hyx(x) and Hy(x), respectively. Here, Hx and Hy have the same family of distributions, but for a
change in location, if and only if

J(Tne) = I(Thne)n/2 <r <n.

Proof. For the necessity part, since Hy and H, belong to the same family of distributions, but for
a change in location, Hy(y) = Hx(y —a) forall a € R. Thus, it is clear that

AIMS Mathematics Volume 10, Issue 3, 6040-6068.
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J(T1¥|n:6) = _Ej hlzf',r|n:G(y)dy = _Ej h)zf,r|n:G(y - Cl)dy = _Ef h)z(,r|n:G(x)dx
( XO 0 0
= J Tr|n:G '

To prove the sufficiency part, it is clear that for odd values of n, r ranges from [n/2] + 1 to
n,so r € {{n/2]+1,...,n — 1,n}. For even values of n, r ranges from [n/2] to n, resulting in
r € {[n/2],..,n—1,n}, where [x] represents the integer part of x. Therefore, we can express r

asr=n-— [%] for i = 1,2,...,n. Thus, we have

Gima @) = (0= [i/2D([i/2] + DA —w" B — (n — 1721+ D210 - w7l
O<u<l,fori=12..,n.
Using this relation, Eq (7) can be reformulated as
ITne) = ITe) = =3y GhncWhx (Hx(w))du, (10)

for i = 1,2,...,n. The same argument also holds for Y. Given the assumption that J(Tr’fn:a) =
J(T}|n:c), using relation (10), we can write

[} @R W) (hx (Hz (W) — hy (Hy " (w)))du = 0. (11)
Thus, it holds that

Jy (1 =) b (u) Chy (Hi (W) — hy (Hy* (w)))du = 0,

Where, for 0 < u < 1,

a0 = =0 E [ ) (1)~ - [5+ D -

By taking z = 1 — u, Eq (11) can be rewritten as follows:

[} 22" (1 — 2)(hy (Hy (1 — 2)) — hy(Hy*(1 — 2)))du = 0.

By applying Lemma 4.1 with the function
Y(x) = ¢pin(1 — 2)(hy (Hx ' (1 = 2)) — hy (Hy ' (1 - 2)),
and considering the complete sequence {z?",n > 1}, one can conclude that
hy(Hz'(1 —2)) = hy(Hy*(1 — 2),a.e. z € (0,1),

or, equivalently, hy(Hx'(x)) = hy(Hy'(x) for all x € (0,1). It follows that Hy'(x) =
Hy'(x) + d for a constant d. This indicates that X and Y share identical distribution functions
except for a shift in location, thereby concluding the proof. O

As a consecutive n-out-of-n:G system represents a specific case of a series system, the
subsequent corollary characterizes its extropy.
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Corollary 4.1. Let TX nin:g and TnInG represent two series systems with the shared PDFs hy(x)

and hy(x), and the CDFs Hy(x) and Hy(x), respectively. In this case, Hx and Hy belong to the
same distribution family, differing only by a location shift, if and only if

J(TXnc) = I(Thn:c), wheren > 1.

An additional useful characterization is presented in the following theorem.

Theorem 4.2. According to the conditions of Theorem 4.1, Hyx and Hy are part of the same family
of distributions, differing only in location and scale, if and only if

I(Mine) _ I(Tring)
JX) I

, n/2<r<n. (12)

Proof. The necessity is evident; therefore, we now focus on establishing sufficiency. Using Egs (9)
and (10), we can deduce the following:

<J(Tr’fn;c)> _ (J(Ti}fn:G)) __ 1f Pt NG (13)

JX) JX) J&x)

An analogous argument can be made for J(T) rin:c)/J(Y). 1f Eq (12) applies to two cumulative
distribution functions Hy and Hy, it follows from Eq (13) that

hy (Hy! ! hy (Hy !
J. gllnG( ) o (Hy (u)) =f ﬁn-G(u)M

70 I

Let us set

_J) _Jy (7 (@) dz
IJX) [} hy(Hg'(2)dz

Following an approach similar to the proof of Theorem 4.1, we can express

Jo 2" bin(1 = 2)(chy(Hx (1 = 2)) = hy (Hy (1 = 2)))du = 0.
The proof concludes by employing arguments analogous to those in Theorem 4.1.

Applying Theorem 4.2, we obtain the following corollary.

Corollary 4.2. Assuming the conditions in Corollary 4.1, Hx and Hy are part of the same
distribution family, differing only in location and scale, if and only if

J(ThnG) _ I(THnG)

forall n>1.
I g ¢ oraln=

The following theorem uses the extropy of consecutive r-out-of-n:G systems to characterize the
exponential distribution.

Theorem 4.3. Let TX rn:G € Cx. In this case, the random variable X has an exponential distribution
with the parameter A if and only if
AIMS Mathematics Volume 10, Issue 3, 6040-6068.
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(Tr)l(n:G) = MJ(X), n/2<r<n. (14)

2r+1

Proof. Given an exponentially distributed random variable X, its extropy, directly calculated using
(1),is JX) = —%. Furthermore, since h(H™1(u)) = A(1 — w), application of Eq (7) yields

2

ré—4rn+r+n

= 2J(X) [} GPme @ (1 — wydu = L) )

1t At
J(Trm:c;) = _Ej 93|n:a(u)h(H_1(u))du = ——J 93|n;6(u)(1 —u)d
0 0

where the third equality is obtained by noting that

(s72-4rn+r+n?)
2(2r+1)

Jy G2ine @1 — wWdu = (15)

To prove sufficiency, we assume that Eq (14) holds for a fixed value of r. By following the proof of
Theorem 4.1 and applying the result from Eq (15), we obtain the following relation:
1 _ 1
—2 Iy G WRHT @)du = 2J(X) f gine W (1 — w)du,
which is equivalent to

[} 92 e IRH (W) + 4J(X)(1 — w)ldu = 0,

where

Gima®) = (0= [i/2D([i/2] + DA —w" B — = [1/2] + D1/210 —wE,

O<v<lfori=1,2,..,n.
Thus, it holds that
f; (1= WP WIh(H™ (W) + 4J(X)(1 — w)]du = 0,

where, for 0 < u < 1,

bin(W) = (1 — w220 [(n - [i/2])([i/2] + 1) — (n = [i/2] + D[i/2]1 — w)]?,
As in the proof of Theorem 4.1, this implies that

Jy 2"bin(1 = DIRHT(1 = 2)) + 4J (X)z]dz = 0.

Applying Lemma 4.1 to the function
Y = pin(1 = 2)[RH(1 - 2)) + 4I (X)z],
and utilizing the complete sequence {z?™,n > 1}, we can deduce that
h(H (1 —2)) = —4J(X)z, a.e.z € (0,1),
which is equivalent to

h(H1(w)) = —4J(X)(1—w),  a.e.w € (0,1).
AIMS Mathematics Volume 10, Issue 3, 6040-6068.
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by taking w = 1 — z. This implies that

dH Y(w) _ 1 _ 1
dw  h(HTI(w)  —4(1-w)JX)
Integrating the equation from 0 to x gives H™1(x) =%+d, where d represents an

arbitrary constant. If we apply the boundary condition lim,_,H~1(x) = 0, it follows that d = 0.

Consequently, this leads to H™1(x) = % for x > 0. This implies the CDF H(x) =1 —

e*dMx x>0, confirming that X~E (—4J (X)), establishing the theorem. O
5.  Nonparametric inference

Here, we present a nonparametric methodology for the estimation of the extropy of a
consecutive r-out-of-n:G system using a series of absolutely continuous, non-negative iid random
variables X;,X,,...,Xy. Let Xy < Xo.n <+ < Xy.n Symbolize the order statistics of this
random sample. As shown before, for 2r > n, the extropy of T, ,.; from (7) can be written as

11
J(Tring) = _%fol 93|n:a(u)h(H‘1(u))du = _%fol gzln:G(u) [deu( )] du.

For estimating J(Tyn.c), We use an estimator for dH~"(u)/du as proposed by Vasicek [36].
This method replaces the differential operator with a difference. The estimator for J(Trn.c) is
derived and can be represented as follows:

o 1 3 ( i ) 2m
]( r|n:G) - 2N L Irin:6 N+1 N(Xi+m:N _Xi—m:N)

2m

(16)

N+1

=23l (re-r D (1- )T nm-n(1- L)r)z

N(Xi+m:N_Xi—m:N),

where any m that is lower than N /2, known as the window size, is a positive integer, and in
scenarios where i—-m<1, X;_ vy =Xy and i+m=N, X;,,,.xn = Xy.n- FOr ease of
computation, the value of m is determined using the heuristic formula proposed in [37]

m = [VN + 0.5].

Now, we assess the performance of | (Tyjn:q) Using simulated standard exponential data by
examining its average bias and mean squared error (MSE). These metrics were computed for various
sample sizes (N=20, 30, 40, 50, 100) and parameter values of r and n. The estimates were based
on 5000 replicates. The results are shown in Table 1. The table reveals that the MSE of the extropy
estimator decreases as the sample size grows. Conversely, the bias demonstrates the opposite trend,
increasing with larger sample sizes. This finding suggests that while the estimator's precision and
reliability improve with larger sample sizes, the slight increase in bias should be accounted for in
practical applications.
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Table 1. Performance of extropy estimators for r-out-of-n:G systems.

z

20 30 40 50 100
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

-0.181145 0.085499 -0.128658 0.044825 -0.108951 0.028227 -0.088738 0.020909 -0.056517 0.008277
-0.446195 0.588884 -0.353662 0.331967 -0.326550 0.234180 -0.286476 0.171004 -0.204887 0.086303
-0.710531 1.574999 -0.631676 1.089014 -0.586988 0.783479 -0.537342 0.636019 -0.439801 0.351538

-0.112163 0.045574 -0.078793 0.022208 -0.061578 0.014417 -0.048807 0.009873 -0.028456 0.004623
-0.337212 0.329122 -0.255551 0.167940 -0.217995 0.111119 -0.189092 0.083114 -0.126828 0.035937
-0.598991 1.254406 -0.521465 0.675481 -0.457323 0.486124 -0.428518 0.397112 -0.314817 0.195990
-0.801058 2.550876 -0.791626 1.778255 -0.720829 1.241665 -0.684045 1.027787 -0.568892 0.597331

-0.253541 0.170353 -0.181460 0.086342 -0.143534 0.055818 -0.119217 0.038978 -0.072617 0.015047
-0.514908 0.818061 -0.414664 0.434816 -0.350406 0.285925 -0.307805 0.219571 -0.219152 0.100408
-0.714558 1.838775 -0.653048 1.239806 -0.618227 0.883754 -0.550797 0.693000 -0.456077 0.391969
-0.877706 3.421076 -0.917753 2.377201 -0.865573 1.729106 -0.840499 1.480399 -0.702916 0.944211

-0.196645 0.107419 -0.129543 0.049289 -0.094905 0.031563 -0.080120 0.022681 -0.044789 0.009303
-0.420839 0.468023 -0.334363 0.253069 -0.267086 0.159740 -0.225139 0.129197 -0.150272 0.047812
-0.665589 1.421686 -0.570275 0.817515 -0.496911 0.558862 -0.450902 0.447029 -0.351760 0.213454
-0.847470 2.504890 -0.815353 1.782421 -0.761208 1.301092 -0.701632 1.109010 -0.596913 0.620492
-0.965621 4.495783 -0.996679 3.032026 -0.990291 2.610200 -0.993252 2.152731 -0.866506 1.319012

0 N o 0o AN O O MAlO OB WO B WIS

o
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. An application to image processing

Information-theoretic measures have gained significant popularity in defining optimized cost
functions for image alignment. Rao et al. [37] proposed cross-cumulative residual entropy as a
measure to tackle both unimodal and multimodal alignment challenges. In a related field, Tahmasebi
et al. [38] proposed a weighted extended cumulative entropy estimator that is used to evaluate image
quality without the need to know the true reference or original versions of the images. In addition,
Toomaj and Atabay [39] and Toomaj [40] investigated the application of cumulative residual Tsallis
entropy and generalized cumulative residual Tsallis entropy in image quality assessments and
demonstrated the potential of these entropy measures for image quality and fidelity assessments.

In this study, we illustrate an application of nonparametric estimation of the extropy of a
consecutive system in the field of image processing. The dataset comprises a grayscale reference
image labeled z, representing boats, and five modified versions of the reference image labeled
Z4,Z,, ..., Zs. Figure 3 shows images from the dataset, each measuring 768 pixels in width and 512
pixels in height. The pixel values, which represent the intensity of the grayscale, were originally
between 0 and 255. For the analysis and calculations, these values were normalized to a standardized
range of 0 to 1, where O represents black and 1 represents white. This normalization ensures
consistency and uniformity in image processing and enables accurate and comparable results for
different analysis methods.

The means and standard deviations of the gray levels of these modified images are presented in
Table 2.

To evaluate and compare the degree of uncertainty in extropy between the original image and
its customized versions, we applied the method described in Eq (16) to estimate the extropy for all
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six images. The extropy was calculated for various values of r and n, with calculations performed
individually for each image. Figure 4 presents the grayscale histograms of the images.

=
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)
Figure 3. Visual representation of modified boats: sample image.
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Table 2. Average gray levels and standard deviations for the images shown in Figure 3.

AIMS Mathematics

Numbers  Pictures Mean Standard deviation
0] z (reference image) 0.51689 0.14495
(i) 7z, =z + 0.3 0.81689 0.14495
(iii) z, = V/0.8z + 03  0.84173 0.07074
(iv) 73 = 7 0.16949 0.12293
(v) zs = log(z) + 2vz 0.71048 0.56383
(vi) zs = |x — 0.5 0.11327 0.09201
£ 1 £ 1 8
(i} (i) ity
% _ — — —
s g g 1
5 > & s ]
ch g g -
(iv) (C)] {vi)

Figure 4. Histograms of boats with their adjustments.
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A comparison of Figures 3 and 4 reveals that the adjusted image z1 is the most similar to the
original image z, followed by z2. In contrast, z3, z4, and zs exhibit the largest deviations from the
original image z. Figure 4 presents the histograms of the grayscale levels for each image. Table 3
provides the estimated extropy values for various combinations of r and n across all six images. The
estimated extropy values for the adjusted images z1 and z2 closely align with the extropy value of the
original image, as shown in Table 3.

Table 3. The values of f(THn:G) for values of r and n.
Pictures O] (i) (iii) (iv) ) (vi)

J(Tys¢)  -1.4190 -1.4190 -2.9873 -2.0373  -0.4231 -2.9155

J(T313:6) -1.1818 -1.1818 -2.3428 -3.2871  -0.2958  -5.2213
J(Ty1a6) -1.8447 -1.8447 -3.9429 -2.1883  -0.5731 -2.8251

J(Ts146) 12781 -1.2781 -2.5096 -2.6448  -0.3456  -4.2030

J(Tara6) -1.1957  -1.1957 -2.3074 -4.2988  -0.2747  -6.7465
J(Tys)  -1.4845  -1.4845 -3.0776 -2.3718  -0.4241  -3.6914
J(Tus:6) -1.2285 -1.2285 -2.4256  -3.4657  -0.3037 -5.5730

J(Tsis.c)  -1.2316  -1.2316  -2.3238  -5.4227  -0.2623  -8.3095

J(Tewq) ~ -1.3610 -1.3610 -2.4778 -8.0456  -0.2546  -11.7062
J(Towe) ~ -1.4896  -1.4896 -2.6473 -10.7175 -0.2533 -14.7816
J(Tenoc)  -1.3306  -1.3306 -2.4553  -6.9550  -0.2618  -10.4628
J(Topnoc)  -1.4284  -1.4284 -2.5661 -9.4015  -0.2538  -13.3158

J(Tiooc) -15698  -15698 -2.7627 -12.1812 -0.2563  -16.4218

Conversely, the extropy values for images zs, z4, and zs significantly deviate from the extropy
value of the original image as the parameters r and n increase. Moreover, the results indicate that the
estimated extropy is influenced by the skewness of the data, with a pronounced sensitivity toward
left skewness. This observation underscores the utility of extropy as a metric for quantifying
uncertainty in image processing tasks. It enables meaningful comparisons between images and
facilitates the measurement of discrepancies within a single image, thereby providing valuable
insights into uncertainty assessments.

5.2. Test of exponentiality

The widespread applicability of the exponential distribution has led researchers to develop a
variety of test statistics for evaluating exponentiality. These statistics are based on various
fundamental concepts from the field of statistics. The main objective is to verify whether the random
variable X follows an exponential distribution. Let X, X5, ..., Xy denote a random sample of size
N drawn from the CDF H. Let Xiy < X,y < - < Xy.y represent the corresponding order
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statistics. Assuming that 7, signifies the CDF of the exponential distribution, defined as H,(x) =
1 — e~ for x > 0, the primary hypothesis under consideration is

Ho:H(x) = Hy(x), vs.Hi: H(x) # Hy(x).

Extropy has recently garnered considerable attention within the research community as a
valuable metric for goodness-of-fit testing. Qin and Jia [22] introduced two consistent extropy
estimators based on the concept of distances and developed a goodness-of-fit test for the uniform
distribution using the more effective estimator. In a related study, Xiong et al. [41] utilized the unique
properties of classical datasets to derive a characterization result for the exponential distribution,
leading to the development of a novel exponentiality test. Their research detailed the formulation of
the test statistic and emphasized the significant advantage of the proposed method, showcasing its
strong performance with small sample sizes.

Building on these developments, Jose and Sathar [42] introduced a new exponentiality test
derived from a characterization result based on the extropy of lower k-record values. In this section,
we extend these advancements by examining the extropy of consecutive systems. Theorem 4.3
demonstrates that the exponential distribution can be uniquely characterized by the extropy of
consecutive systems. On the basis of this result, we propose a new test statistic for uniformity,
denoted TEX, , and defined as follows:

r2—arn+r+n?)

(5
TEXr,n = J(Tr)fn:(;) - 1 JX),

with 2r = n. Directly for 2r > n, Theorem 4.3 implies that TEX, , = 0 if and only if X is
exponentially distributed. This fundamental property establishes TEX,. , as a viable measure of
exponentiality and a suitable candidate for a test statistic. For a given random sample X, X5, ..., Xy,
the estimator TEX,., of TEX,., serves as a viable test statistic. Substantial deviations of TEX,.,
from its expected value under the null hypothesis (assuming an exponential distribution) suggest
nonexponentiality, leading to rejection of the null hypothesis.

To illustrate, we focus on the specific case where n =3 and r = 2, utilizing TEX,; as the
test statistic. To derive an expression for 77157(2,3, we recall that Qiu and Jia’s [22] estimator for
J(X), denoted JQ2,,, and defined by

JQ2pn = — == 3N o
mn 2N “= NXipmn—Xiemn)’

forall i = m + 1,m + 2,...,N — m, where m is a positive integer smaller than % which is

known as the window size. Here, ¢; depends on the window size m and the sample size N, and is
defined as

i—1
1+—— if1<i<m,
m
i =142 ifm+1<i<N-m,

N-—-i ]
k1+T 1fN—m+1SlSN

Therefore, a reasonable estimator for TEX,; can be derived using Eq (16) and the jQ2,,,
estimator as follows:
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TEXy3 = J(T3s.6) — 1.4/Q2mn

1 [ 2m 1.4 cm
= -5y § 9213:6 ( ) — +55 —
2N = N+1 N(Xi+m:N Xi—m:N) 2N = N(Xi+m:N Xi—m:N)

2

.2

l
_ 1—— 3(1———) ) —1.4c
ZNZZ[ N+1) ( N+1)> i

Ensuring the consistency of an estimator is essential, especially when evaluating estimators for
parametric functions. The following theorem justifies the result presented in Eq (13). The proof
follows a similar approach as Theorem 1 in the work of Vasicek [36]. It is noteworthy that Park [43]
and Xiong et al. [41] have also used the consistency proof method of Vasicek [36] to demonstrate
the consistency of their respective proposed test statistics.

m
(Xi+m:N - Xi—m:N).

Theorem 5.1. Suppose Xi,X,,...,Xy represents a random sample of size N taken from a
population with the PDF h and the CDF H and assume that the random variable has finite variance.

— P p
Then TEX,3; — TEX,3 as N - +oo,m — +o0, and %—) 0, where — stands for the convergence
in probability.

Proof. From Part (2) of Theorem 2.1 in Qiu and Jia [22], we establish the consistency of their
estimator, demonstrating that /Q2,,,, L J(X) as N - +oo,m — +o0, and %—) 0. Furthermore,
by applying the methodology employed in Theorem 1 of Vasicek [36], it can be shown that

. P : - . :
J(Tz’f&a) - J(Tz’f&a) under the same asymptotic conditions. Leveraging the well-known properties
of convergence in probability, these individual convergences collectively imply that
— p .

TEXy3 = TEX,3 as N — +0o,m — +oo, and — — 0, thus completing the theorem. O

In the next result, we show that the root mean square error (RMSE) of TEX,; remains
invariant under shifts in the random variable X. However, this invariance property does not extend
to scale transformations. The proof of these assertions can be readily derived by adapting the
arguments presented by Ebrahimi et al. [44].

Theorem 5.2. Assume that X, X,, ..., Xy is @ random sample of size N taken from a population
with the PDF h and the CDF H and Y; = aX; +b, a> 0,b € R. We denote the estimators for
TEX,5 on the basis of X; and Y; as TEX3; and TEXY, respectively. Then the following
properties apply:

(i). E(TEXY3) = E(TEXSy)/a,

(ii).Var(TEXY3) = Var(TEX%;)/a?,

(iit). RMSE (TEXY ;) = RMSE(TEX%3)/a.

Under the null hypothesis, #,, the value of TEX, asymptotically converges to zero as the
sample size N approaches infinity. Conversely, under an alternative distribution with an absolute
CDF H, the value of TEX,; converges to a positive value as N — +oco. On the basis of these
asymptotic properties, we reject the null hypothesis at a given significance level a for a finite
sample size N if the observed value of the test statistic TEX,; exceeds the critical value
TEX,5(1 — «). The asymptotic distribution of TEX, 5 is intricate and analytically intractable due
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to its dependence on both the sample size N and the window parameter m. To address this
challenge, we employed a Monte Carlo simulation approach. Specifically, we generated 10,000
samples of sizes N = 5,10,20,30,40,50,100 from the standard exponential distribution under the
null hypothesis. For each sample size, we determined the (1 — a)-th quantile of the simulated
TEX, 5 values to establish the critical value for significance levels of a = 0.05,0.01, while varying
the window size m from 2 to 30. Tables 4 and 5 present the resulting critical values for the sample
sizes and significance levels.

Table 4. Critical values for the TEX, ; statistic at a significance level of a = 0.05.
10 20 30 40 50 100

0.392760  0.426261  0.408188  0.370928  0.345209  0.325547  0.276111
0.256732  0.310455 0.298978  0.280804  0.266413  0.233605
0.167984  0.262434  0.260041  0.254924  0.247686  0.217291
0.220400  0.240972  0.234169  0.226952  0.209230
0.190010  0.221079  0.223800 0.224075  0.203623
0.162221  0.204084  0.211321  0.212932  0.201040
0.137848  0.186883  0.200525 0.206573  0.196061
0.112155 0.170815 0.190179  0.197469  0.192268

@CD\IO’JU‘I-POOI\)B/{
9]

10 0.156946  0.180424  0.188462  0.188866
11 0.143658  0.170753  0.181926  0.186943
12 0.130159  0.162522  0.175824  0.182534
13 0.114942  0.151853  0.168501  0.182272
14 0.100294  0.143133  0.160954  0.179480
15 0.133609 0.154681  0.177512
16 0.124017  0.148916  0.176364
17 0.113931  0.141795  0.173249
18 0.105489  0.134651  0.171756
19 0.095544  0.128092  0.168481
20 0.121033  0.165106
21 0.112600  0.163181
22 0.108014  0.160569
23 0.100303  0.157498
24 0.094096  0.156319
25 0.152628
26 0.150252
27 0.148062
28 0.145747
29 0.142582
30 0.140512
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Table 5. Critical values for the TEX, 5 statistic at a significance level of a = 0.01.
10 20 30 40 50 100

1.053178  0.938843  0.772869  0.640493  0.528622  0.459050  0.362216
0.479087  0.492840  0.420595 0.384199  0.366036  0.288657
0.268607  0.380484  0.355607  0.337965  0.313871  0.260337
0.314430  0.325836  0.316929  0.299652  0.246397
0.263398 0.297401  0.282599  0.276863  0.242613
0.220610  0.260667  0.268228  0.266767  0.231963
0.185270  0.240120  0.252814  0.251865  0.229389
0.153756  0.216610  0.237591  0.242775  0.225811

LOCD\I@U‘I-POONB/{
(&)

10 0.199846  0.226231  0.230457  0.220759
11 0.181437  0.208671  0.222451  0.218314
12 0.159556  0.193013  0.218025  0.214407
13 0.143145 0.186961  0.200991  0.209588
14 0.132947  0.176258  0.196367  0.209358
15 0.164229  0.189409  0.204428
16 0.149523  0.179248  0.201796
17 0.142593  0.169621  0.196137
18 0.128815  0.158624  0.195853
19 0.118047  0.151383  0.193241
20 0.142305  0.191017
21 0.134568  0.188609
22 0.128321  0.183087
23 0.117420  0.182034
24 0.111446  0.178733
25 0.173922
26 0.171182
27 0.167072
28 0.163905
29 0.160764
30 0.156246

5.3. Power comparisons

A Monte Carlo simulation study involving nine alternative probability distributions was
performed to evaluate the significance of the T’ET(Z3 test. For every sample size N, a total of 10,000
samples of size N were drawn from each of the alternative distributions.

The TEX, 5 statistic was computed for each generated sample. The significance of the TEX, 5
test at a given significance level a was determined by calculating the proportion of the 10,000
samples whose test values surpassed the critical value.

The performance and efficiency of the TEX, ;-based test was assessed by comparing its
performance with various established tests for exponentiality reported in the literature.
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Table 6 provides the PDFs of the alternative distributions considered. The distributions and
their parameters used in the simulations align with those utilized by Jose and Sathar [42].

Table 6. Alternative probability distributions for evaluating the power of the test statistic.

Distribution Probability density function Support Notation
Weibull a-1 _(x\* x>0B0>0 W(a,
oo =2 (f) e‘(ﬁ) g (@F)
Gamma 1 x>0,afF>0 G(a,
o0 = I B (@ B)
BT(a)
Uniform 1 as<x<p U(a, B)
f&x) =—-—
L—a
Half-normal 2 _x% x>0,A>0 HN(A)
f(x) = —=e 27
Y
Log-normal 1 _(nx—p)? x>0A1>0,u€R LN(u, 1)

272

== Y

The selected distributions represent a diverse range of reliability behaviors commonly
encountered in applied settings. The Weibull and Gamma distributions were chosen, as they are
widely used in modeling lifetimes, with the Weibull distribution capturing both increasing and
decreasing failure rates through its shape parameter, and the Gamma distribution serving as a flexible
alternative for modeling skewed lifetime data. The uniform distribution is included as a contrasting
case where all failure times are equally probable, providing a baseline for comparison. The half-
normal distribution, often used in reliability analyses and statistical modeling, represents cases where
the failure times are positively skewed. By considering these distributions, we ensured a
comprehensive evaluation of extropy’s performance in different stochastic scenarios.

Now, we compare the efficiency of the new proposed test based on the Tﬁ(z,g statistic against
established tests for exponentiality available in the literature, as detailed in Table 7.

Table 7. Competing tests for exponentiality.

Test  Reference Notation
1 Xiong et al. [41] D,
2 Jose and Sathar [42] D
3 Fortiana and Gran€[45] D3
4 Choi et al. [46] D4
5 Mimoto and Zitikis [47] Ds
6 Volkova [48] De
7 Zamanzade and Arghami [49] Dy
8 Baratpour and Rad [50] Ds
9 Noughabi and Arghami [51] Do
10 Volkova and Nikitin [52] D10
11 Torabi et al. [53] D11

The efficacy of the TEX, 5 statistic is influenced by the chosen window size, m. Selecting an
appropriate m value is crucial for achieving adequate adjusted statistical power. On the basis of
AIMS Mathematics Volume 10, Issue 3, 6040-6068.
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simulations across different sample sizes, a heuristic formula was derived, namely m = [0.4N],
where [x] represents the largest integer less than or equal to x. This formula provides a practical
guideline for selecting m, aiming to ensure robust and generally effective power performance across
diverse distributions.

To evaluate the performance of TEX, 3, we selected 10 competing tests for exponentiality and
assessed their power against various alternative distributions.

Notably, Xiong et al. [41] proposed a test statistic based on the extropy of classical records,
while Jose and Sathar [42] characterized the exponential distribution using extropy derived from
lower k-records and subsequently constructed a test statistic. These tests, denoted Ty and T, in
Table 7, are included in our comparative analysis. The authors of these tests provided valuable
insights regarding their applicability and suitability for testing exponentiality.

The power analysis involved simulating 10,000 samples with sizes N = 10,20, and 50 from
each alternative distribution listed in Table 6. The power values of TEX, ; were computed at the 5%
significance level. Subsequently, the power values for TEX,; and 11 competing tests were
evaluated for the same sample sizes and distributions. The results are summarized in Table 8.

Table 8. Power comparisons of the tests at the significance level a = 0.05.

N H, D, D, Dy D, Ds Dy D, Dg Dy Dy Dy TEX,
G(1,1) 5 5 5 5 5 5 5 5 5 5 5 5
G(0.4,1) 60 83 34 11 50 46 29 7 0 50 65 57
W (1.4, 1) 15 17 15 7 16 13 16 23 29 16 1 13

10 HN @) 18 8 11 0 10 8 10 8 20 10 1 17
u(,1) 93 100 42 28 31 15 33 60 51 24 2 100

LN (O, 0.8) 5 5 12 24 16 21 23 17 26 19 2 4
LN (0, 1.4) 3 2 36 19 40 6 29 15 1 9 47 5

G(1,1) 5 5 5 5 5 5 5 5 5 5 6 5
G(04,1) 95 99 56 31 I 80 66 25 0 82 89 89
W (1.4,1) 29 8 32 27 34 27 17 33 47 29 6 22
20 HN Q) 37 5 23 14 19 12 7 30 23 14 2 35
u(@,1) 100 100 86 52 63 28 54 92 80 39 18 100

LN (O, 0.8) 4 4 18 52 26 48 42 18 49 45 8 2
LN (O, 1.4) 0 3 61 45 67 11 64 43 0 16 71 0

G(1, 1) 5 5 5 5 5 5 5 5 5 5 5 5
G(0.4, 1) 100 1200 89 78 99 9 95 68 0O 99 100 100
W (1.4, 1) 56 7 73 5 79 65 5 62 8 67 37 51
50 HN (1) 73 2 59 23 52 25 1 54 48 28 13 81
U (0, 1) 100 100 100 91 98 62 62 100 99 72 78 100

LN (0, 0.8) 3 3 26 93 44 93 55 24 84 92 47 6
LN (O, 1.4) 0 2 93 85 95 25 93 85 0 29 95 0
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5.3.1.  Analysis of the results

For N =10, the TEX,; test shows the expected low power against the exponential
distribution (Table 8). However, it excels in distinguishing Gamma distributions from exponential
distributions, achieving high power as the Gamma shape parameter decreases. Against Weibull
distributions, TEX, 5’s power is competitive, ranking among the top 4 of the 11 tests. While it is not
the best performer against the half-normal and log-normal distributions, TEX,; demonstrates
exceptional power against the uniform distribution, outperforming all its competitors.

For N =20, TEX,; demonstrates the highest power across all tests for the Gamma and
uniform distributions. Although its performance against the Weibull, half-normal, and log-normal
distributions is competitive, it stands out in identifying deviations from the exponential distribution.

Finally, for N =50, a larger sample size, TEX,; demonstrates the highest power (shared
with some competitors) against the Gamma, half-normal, and uniform distributions. Although its
performance against the Weibull and log-normal distributions is not the best, these results affirm
'IfET(ZB ’s competitive performance across larger sample sizes.

5.3.2. Arreal data example

To demonstrate the practical application of our proposed test, we present an analysis of a real-
world dataset. Specifically, we examine data on the time, in hours of operation, between successive
failures of air-conditioning equipment in 13 aircraft to study their aging properties, as reported by
Proschan [54]. The data are as follows: 90, 10, 60, 186, 61, 49, 14, 24, 56, 20, 79, 84, 44,59, 29, 118,
25, 156, 310, 76, 26, 44, 23, 62, 130, 208, 70, 101, and 208.

The proposed test statistic TEX,5; was used to assess exponentiality. Table 9 presents the
calculated test statistic values and corresponding p-values for each dataset.

Table 9. Results of the exponentiality tests for electrical appliances’ failure data.
Test KS AD CVM  TEX,3
P-value  0.5846 0.4727 0.4913 0.1664

The window size, m, was determined using the formula m = [0.4N]. For comparison, Table 9
also includes p-values obtained from the Kolmogorov—-Smirnov (KS), Anderson-Darling (AD), and
Cramer-von Mises (CVM) tests for exponentiality. Consequently, the test fails to reject the null
hypothesis, indicating that the failure times are consistent with an exponential distribution at a
significance level of a = 0.05. Lawless [55] confirmed this conclusion by applying three additional
test statistics to the same failure dataset, yielding identical results.

6. Conclusions

This study explores the extropy of consecutive r-out-of-n:G systems, providing a
comprehensive framework for both theoretical analysis and practical applications. Exact expressions
for systems’ lifetime extropy were derived and evaluated across various lifetime distributions. The
theoretical contributions include new bounds, characterization results, and insights into the
variability of extropy, enhancing its applicability in reliability analyses. To address the
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computational challenges associated with extropy in systems with large component sizes or complex
distributions, practical bounds were introduced to facilitate estimation. These bounds were validated
through numerical examples, demonstrating their effectiveness. Additionally, a nonparametric
extropy estimator was developed and applied to image processing, highlighting its practical
significance.

A key contribution of this study is the development of a novel test statistic for exponentiality,
with numerically computed critical values and an extensive performance assessment against
alternative distributions. The results indicate that the test is particularly effective in distinguishing
the exponential from the Gamma and uniform distributions, though its sensitivity varies in the cases
of Weibull and half-normal distribution. The test’s power was benchmarked against 11 competing
goodness-of-fit tests, demonstrating strong and consistent performance across different sample sizes.
A heuristic formula was also introduced to optimize the selection of window size, ensuring robust
test implementation.

In summary, this research bridges the gap between theoretical stochastic order analysis and real-
world statistical inference. It provides valuable tools for reliability modeling, particularly in
consecutive system analysis, goodness-of-fit testing, and nonparametric estimation. The findings
emphasize the utility of extropy as a computationally efficient and informative measure in both
reliability engineering and broader statistical applications.
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