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1. Introduction 

The quantification of uncertainty in probability distributions is fundamental to information 

theory. Among its most important measures, Shannon's entropy [1] stands out. Entropy for a 

continuous random variable 𝑋 , characterized by a probability density function (PDF) ℎ(𝑥), is 
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calculated as 𝔼[−log ℎ(𝑋)], assuming that the expectation is well-defined. Entropy measures the 

deviation from a uniform distribution. Since the uniform distribution represents the least 

concentrated distribution, entropy quantifies the concentration of 𝑓 and thus the unpredictability of 

the system in terms of 𝑋 . Zellner [2], an advocate for information-theoretic approaches, made 

significant contributions to integrating information and Bayesian methods, inspiring many to explore 

these techniques. For instance, Ebrahimi et al. [3] examined the relationship between reliability and 

econometrics by introducing an information relationship between a system and its components by 

using Shannon entropy. This approach is particularly useful for ranking the importance of 

components on the basis of their information’s dependence on the operational status or lifespan of 

the system. Asadi et al. [4] introduced the Jensen-Shannon information criteria for comparing 

systems on the basis of the complexity of the system. This scalar function of the signature ranks 

systems based on their design. It quantifies the remaining uncertainty about the system’s lifetime, 

the dependency between lifetime and component failures, and applies Bayesian decision theory. 

These results prompted us to explore uncertainty measures as valuable tools in reliability and 

engineering systems. Extropy, the mirror image of entropy, was recently introduced by Lad et al. [5] 

as a complementary measure of uncertainty. Extropy, denoted as 𝒥(𝑋), for a non-negative random 

variable 𝑋 with a PDF ℎ(𝑥) and a cumulative distribution function (CDF) 𝐻(𝑥), is expressed as 

follows: 

𝒥(𝑋) = −
1

2
∫
∞

0
ℎ2(𝑥)d𝑥 = −

1

2
𝔼[ℎ(𝐻−1(𝑈))],                    (1) 

where 𝑈 is a uniform random variable on the interval [0,1], 𝐻−1(𝑢) = inf{𝑥: 𝐻(𝑥) ≥ 𝑢}, 𝑢 ∈

[0,1], signifies the quantile function of 𝐻, and 𝔼(⋅) means the expectation. Similar to entropy, 

extropy measures the deviation from a uniform distribution and quantifies the concentration of 𝑓, 

thereby gauging the unpredictability of the system in terms of 𝑋. While entropy and extropy quantify 

the uncertainty, the lack of a simple relationship between orderings of a distribution by the two 

measures arises from some substantial and subtle differences. For example, the differential entropy 

takes values in [−∞,∞] while extropy takes values in [−∞, 0); for more details, see Toomaj 

et al. [6]. A significant statistical use of extropy lies in assessing predictive distributions through the 

total logarithmic scoring rule. Readers seeking a deeper understanding will find comprehensive 

insights in the work of Agro et al. [7], Capotorti et al. [8], and Gneiting and Raftery [9]. An alternative 

and valuable representation for the extropy by using (1) can be written as 

𝒥(𝑋) = −
1

4
𝔼[𝜆(𝑋12)],                    (2) 

where 𝜆(𝑥) = ℎ(𝑥)/𝑆(𝑥) represents the hazard rate function, 𝑆(𝑥) = 𝑃(𝑋 > 𝑥) is the reliability 

function of 𝑋, and 𝑋12 follows a PDF given by Toomaj et al. [6]: 

𝑓12(𝑥) = 2ℎ(𝑥)𝑆(𝑥), 𝑥 > 0.                          (3) 

The aim of this paper was to investigate the properties of extropy in a linear consecutive r-out-

of-n:G system and apply them to testing for exponentiality. A linear consecutive r-out-of-n:G system 

is a system that comprises n independent and identically distributed (iid) components arranged in a 

linear configuration, where the system operates successfully if and only if at least r consecutive 

components remain functional. These systems are used in communication systems, road parking 
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plans, and oil pipeline networks. Consecutive n-out-of-n:G systems represent series systems, while 

consecutive 1-out-of-n:G systems correspond to parallel systems, both of which are crucial for 

reliability modeling. Fundamental works in this field include Gera [10], Chang et al. [11], Boland 

and Samaniego [12] and Eryılmaz [13,14]. In addition, studies such as [15–17] investigated different 

configurations of consecutive r-out-of-n systems and emphasized their relevance in real-world 

scenarios. Research on the information properties of ordered data has been extensively explored, as 

evidenced by the work in [18–20]. Recently, extropy has gained prominence as a key metric for 

measuring uncertainty. Fundamental contributions in this field include the work of Qiu [21] and Qiu 

and Jia [22,23]. Subsequent studies by Kayid and Alshehri [24] investigated the extropy of past 

lifetimes in coherent systems, including cases where all components remain inactive within a given 

timeframe. Shrahili and Kayid [25] studied the residul extropy of order statistics, while Shrahili 

et al. [26] made further progress in this area. Building on these fundamental studies, the present 

work aimed to deepen the understanding of extropy by investigating its properties and behavior 

specifically in the context of consecutive r-out-of-n:G systems. 

While previous research has examined the extropy of order statistics and record values, its 

properties in consecutive systems remain largely unexplored. This study addresses this gap by 

investigating the extropy of such systems. Specifically, we leverage extropy’s computational 

advantages over other information measures, such as Shannon entropy, to facilitate more tractable 

computations for consecutive systems, even with complex distribution functions. This enhancement 

makes our approach both practical and widely applicable. Furthermore, while prior studies, such as 

Navarro et al. [27,28], have explored the preservation of dispersive order and reliability properties 

in coherent systems, our work extends these findings by introducing extropy as a complementary 

measure for assessing uncertainty in consecutive r-out-of-n:G systems. In particular, we establish 

new results on the preservation of aging properties and stochastic orders in the context of extropy, 

providing insights beyond classical entropy-based approaches. These contributions bridge the gap 

between stochastic order theory and information measures, offering a novel perspective on systems’ 

reliability. The applicability of our results is demonstrated through an image processing example, 

where the proposed extropy-based estimator is used to assess uncertainty in grayscale image 

distributions. 

The structure of this paper is organized as follows: in Section 2, we introduce a formulation for 

the extropy of Tr∣n:G, the lifetime of the consecutive system, assuming a general continuous 

distribution function H. This representation is expressed as the extropy of such systems when the 

underlying distribution is uniform, establishing a link between the extropy measures in different 

distribution constellations. Deriving explicit formulas for the extropy of order statistics is often 

challenging across various statistical frameworks. To solve this problem, some bounds are derived 

in Section 3. Section 4 focuses on the characterization of the extropy for consecutive systems, where 

the main results are presented. In particular, the exponential distribution is characterized in this 

context. To substantiate the theoretical developments, the computational results are presented in 

Section 5. In this section, a nonparametric estimator for the extropy of consecutive systems is 

introduced, and its application in image processing is presented as an example of its practical 

implementation. Furthermore, a novel test statistic for exponentiality is proposed, and its critical 

values are determined numerically. The validity of this test is evaluated against a number of 
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alternative distributions. Finally, Section 6 summarizes the main results and contributions, and 

highlights their importance in both theoretical and applied contexts. 

2. Extropy of consecutive r-out-of-n:G systems 

Hereafter, we focus on deriving an expression for the extropy associated with consecutive r-

out-of-n:G systems. Assume that 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 represent the iid component lifetimes within the 

systems, where each follows the same h(x), 𝐻(𝑥), and reliability function 𝑆(𝑥). The lifetime of the 

overall system is represented by Tr∣n:G. Eryilmaz [29] showed that the system's reliability function 

can be formulated as follows when 2𝑟 ≥ 𝑛: 

𝑆𝑟|𝑛:𝐺(𝑡) = 𝑃(𝑇𝑟|𝑛:𝐺 > 𝑡) = (𝑛 − 𝑟 + 1)𝑆
𝑟(𝑡) − (𝑛 − 𝑟)𝑆𝑟+1(𝑡), 𝑡 > 0. 

It follows that 

ℎ𝑟|𝑛:𝐺(𝑡) = 𝑟(𝑛 − 𝑟 + 1)𝑆
𝑟−1(𝑡)ℎ(𝑡) − (𝑟 + 1)(𝑛 − 𝑟)𝑆𝑟(𝑡)ℎ(𝑡)          (4) 

= (𝑛 − 𝑟 + 1)ℎ1:𝑟(𝑡) − (𝑛 − 𝑟)ℎ1:𝑟+1(𝑡), 𝑡 > 0,                (5) 

where ℎ1:𝑗(𝑡)  is the PDF of the series system with a lifetime 𝑋1:𝑗 = min(𝑋1, ⋯ , 𝑋𝑗) . In the 

subsequent paragraphs,we derive a formulae for extropy 𝑇𝑟|𝑛:𝐺  by utilizing the probability integral 

transformation 𝑈𝑟|𝑛:𝐺 = 𝐻(𝑇𝑟|𝑛:𝐺). It is established that the transformed components of the system, 

defined as 𝑈𝑖 = 𝐻(𝑋𝑖) for 𝑖 = 1,… , 𝑛, are iid random variables with a uniform distribution. For 

2𝑟 ≥ 𝑛 and 0 < 𝑢 < 1, the probability density function of 𝑈𝑟|𝑛:𝐺 is given by 

𝑔𝑟|𝑛:𝐺(𝑢) = 𝑟(𝑛 − 𝑟 + 1)(1 − 𝑢)
𝑟−1 − (𝑟 + 1)(𝑛 − 𝑟)(1 − 𝑢)𝑟.            (6) 

On the basis of the previously introduced transformations, we now present the following 

theorem. 

Theorem 2.1. For 2r ≥ n, the extropy of Tr|n:G can be expressed as follows: 

𝒥(𝑇𝑟|𝑛:𝐺) = −
1

2
∫
1

0
𝑔𝑟|𝑛:𝐺
2 (𝑢)ℎ(𝐻−1(𝑢))d𝑢,                    (7) 

where 𝑔𝑟|𝑛:𝐺(𝑢) is given by (6). 

To illustrate (7), we provide the following example. 

Example 2.1. Consider 

𝑇𝑟|𝑛:𝐺 = max(𝑋1:𝑟 , 𝑋2:𝑟+1, … , 𝑋𝑛−𝑟+1:𝑛), 

where 𝑋𝑗:𝑚 = min(𝑋𝑗 , … , 𝑋𝑚) for 1 ≤ 𝑗 < 𝑚 ≤ 𝑛, as the lifetime of a linear consecutive 𝑟-out-

of-𝑛:G system. Assume that the component lifetimes are iid with a common CDF defined as 

𝐻(𝑥) = 1 − 𝑒−𝑥
𝛼
, 𝑥 > 0, for all 𝛼 > 0.                      (8) 

It should be noted that Eq (8) represents the cumulative distribution function of a Weibull 

random variable, with a shape parameter α > 0 and a unit scale parameter. It can be observed that 

ℎ(𝐻−1(𝑢)) = 𝛼(1 − 𝑢)(−log(1 − 𝑢))
𝛼−1

𝛼 , 0 < 𝑢 < 1. From Eq (7), 
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𝒥(𝑇𝑟|𝑛:𝐺) = −
𝛼

2
∫
1

0
𝑔𝑟|𝑛:𝐺
2 (𝑢)(1 − 𝑢)(−log(1 − 𝑢))

𝛼−1

𝛼 d𝑢. 

Numerical methods are used to study the relationship between the entropy of 𝒥(𝑇𝑟|𝑛:𝐺) and 

the shape parameter 𝛼, since it is inherently difficult to obtain an explicit expression. The analysis 

focuses on consecutive r-out-of-10:G systems, where r is between 6 and 10. As shown in Figure 1, 

the extropy of the system initially increases with 𝛼 and reaches a peak value before decreasing for 

𝛼 > 1. The results for 0 < 𝛼 < 1 are not shown due to the divergence of the integral. The findings 

emphasize the notable impact of the shape parameter on the system's extropy. Furthermore, no 

correlation is observed between the monotonicity of the extropy and the number of functioning 

components. 

 

Figure 1. Example 2.1 illustrates 𝒥(𝑇𝑟|𝑛:𝐺) as a function of 𝛼 for different values of 

𝑟 = 6,7,8,9,10, with 𝑛 = 10. 

Let us consider 𝑋  and 𝑌  with the PDFs ℎ𝑋(𝑥) and ℎ𝑌(𝑥), and the reliability functions 

𝑆𝑋(𝑥) and 𝑆𝑌(𝑥), respectively. Recall that 𝑋 is considered to be smaller than 𝑌 in the dispersive 

order, expressed as 𝑋 ≤𝑑𝑖𝑠𝑝 𝑌, if 

ℎ𝑋(𝐻𝑋
−1(𝑣)) ≥ ℎ𝑌(𝐻𝑌

−1(𝑣))                           (9) 

holds for all 0 < 𝑣 < 1. In addition, 𝑋 is said to have the decreasing failure rate (DFR) property if 

the ratio ℎ𝑋(𝑥)/𝑆𝑋(𝑥)  decreases with 𝑥 > 0 . For further details, we direct the reader to the 

comprehensive work of Bagai and Kochar [30]. Based on the expression in Eq (7), the following 

theorem is derived. Hereafter, we use 𝒞𝑋  to denote the class of all consecutive 𝑟-out-of-𝑛 :G 

systems with a lifetime 𝑇𝑟|𝑛:𝐺
𝑋  consisting of 𝑛 iid components with the CDF 𝐻𝑋 and the PDF ℎ𝑋. 

Theorem 2.2. Assume that Tr|n:G
X ∈ 𝒞X and Tr|n:G

X ∈ 𝒞Y. If X ≤disp Y, then 𝒥(Tr|n:G
X ) ≤ 𝒥(Tr|n:G

Y ) 

for 2r ≥ n. 

It is worth noting that the above results can be derived by applying Part (i) of Theorem 2.9 from 

Navarro et al. [31], along with the observation that the disperive order implies the extropy order in 
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the sense that 𝑇𝑟|𝑛:𝐺
𝑋 ≤𝑑𝑖𝑠𝑝 𝑇𝑟|𝑛:𝐺

𝑌  yields 𝒥(𝑇𝑟|𝑛:𝐺
𝑋 ) ≤ 𝒥(𝑇𝑟|𝑛:𝐺

𝑌 ). For further details on the results 

related to stochastic orders and the preservation properties of coherent and mixed systems, we refer 

the readers to Navarro et al. [32]. Before introducing the next corollary, we first present the following 

lemma from Bagai and Kochar [30]. 

Lemma 2.1. For the random variables X and Y, if X ≤hr Y and either X or Y has a DFR, then 

X ≤disp Y. 

The following corollary can be derived from the lemma above and Theorem 2.2. 

Corollary 2.1. Under the assumptions of Theorem 2.2, if X ≤hr Y and either X or Y has a DFR, 

then 𝒥(Tr|n:G
X ) ≤ 𝒥(Tr|n:G

Y ). 

The following example illustrates Corollary 2.1. 

Example 2.2. Define 𝑇𝑟|𝑛:𝐺
𝑋 = max(min(𝑋1, 𝑋2), min(𝑋2, 𝑋3)) as the lifetime of a consecutive 2-

out-of-3:G system, where the iid components’ lifetimes {𝑋1, 𝑋2, 𝑋3} follow a Makeham distribution 

with the reliability function 𝑆𝑋(𝑥) = 𝑒
−𝑥−𝑎(𝑥+𝑒−𝑥−1)  for 𝑥 > 0  and 𝑎 > 0 . Moreover, let 

𝑇𝑟|𝑛:𝐺
𝑌 = max(min(𝑌1, 𝑌2),min(𝑌2, 𝑌3))  be the lifetime of a consecutive 2 -out-of-3 :G system 

having iid component lifetimes {𝑌1, 𝑌2, 𝑌3} following an exponential distribution with the reliability 

function 𝑆𝑌(𝑥) = 𝑒
−𝑥 , where 𝑥 > 0. It is not hard to see that the hazard rate function of 𝑋 is 

𝜆𝑋(𝑥) = 1 + 𝑎(1 − 𝑒
−𝑥), while the hazard rate function of 𝑌 is 𝜆𝑌(𝑥) = 1. It can be shown that 

𝑋 ≤ℎ𝑟 𝑌  for 𝑎 > 0, and 𝑌  has a DFR. As a consequence, Corollary 2.1 becomes applicable, 

implying that 𝒥(𝑇𝑟|𝑛:𝐺
𝑋 ) ≤ 𝒥(𝑇𝑟|𝑛:𝐺

𝑌 ). 

The next theorem demonstrates that for consecutive r-out-of-n:G systems where the 

components’ lifetime has a DFR, the series system achieves the lowest extropy. 

Theorem 2.3. Assume that Tr|n:G ∈ 𝒞X such that X has a DFR. Under the condition 2r ≥ n, the 

following statements then hold: 

(i) 𝒥(𝑋1:𝑛) ≤ 𝒥(𝑇𝑟|𝑛:𝐺). 

(ii) 𝒥(𝑋1:𝑟) ≤ 𝒥(𝑇𝑟|𝑛:𝐺). 

Proof. (i) It is evident that the function 

𝑆𝑟|𝑛:𝐺(𝑡)

𝑆1:𝑛(𝑡)
= 𝑆𝑟−𝑛(𝑡)(1 + (𝑛 − 𝑟)𝐻(𝑡)) 

is increasing in 𝑡 for all 1 ≤ 𝑟 ≤ 𝑛, indicating that 𝑋1:𝑛 ≤ℎ𝑟 𝑇𝑟|𝑛:𝐺. Furthermore, if 𝑋 exhibits 

the DFR property, then it follows that 𝑋1:𝑛  also possesses the DFR property. By applying 

Lemma 2.1, we conclude that 𝑋1:𝑛 ≤𝑑𝑖𝑠𝑝 𝑇𝑟|𝑛:𝐺. This relationship implies that 𝒥(𝑋1:𝑛) ≤ 𝒥(𝑇𝑟|𝑛:𝐺), 

since 𝑋 ≤𝑑𝑖𝑠𝑝 𝑌 entails 𝒥(𝑋) ≤ 𝒥(𝑌). 

(ii) According to the findings presented in Proposition 3.2 of Navarro and Eryilmaz [33], it can 

be inferred that 𝑋1:𝑟 ≤ℎ𝑟 𝑇𝑟|𝑛:𝐺. Consequently, employing analogous reasoning to that employed in 

Part (i) leads to the acquisition of similar results.  □ 

We proceed to extend Theorem 2.3, addressing cases where the number of systems and their 

respective component lifetimes are not necessarily identical. 
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Theorem 2.4. Assume that X1:n1 ∈ 𝒞X and Tr|n2:G
Y ∈ 𝒞Y for all 2r ≥ n2, and n1 ≠ n2. If X has a 

DFR and X ≤disp Y, then 𝒥(X1:n1) ≤ 𝒥(Tr|n2:G
Y ) for all 2r ≥ n2 such that 1 ≤ r ≤ min(n1, n2). 

Proof. Assume that 𝑇𝑟|𝑛2:𝐺
𝑋 ∈ 𝒞𝑋 for 2𝑟 ≥ 𝑛2. It is clear that the function 

𝑆𝑟|𝑛2:𝐺(𝑡)

𝑆1:𝑛1(𝑡)
= 𝑆𝑟−𝑛1(𝑡)(1 + (𝑛2 − 𝑟)𝐻(𝑡)) 

is increasing in 𝑡  for all 1 ≤ 𝑟 ≤ min(𝑛1, 𝑛2)  with 𝑛1 ≠ 𝑛2 . This indicates that 

𝑋1:𝑛1 ≤ℎ𝑟 𝑇
𝑋
𝑟|𝑛2:𝐺 . Following the approach in the proof of Theorem 2.3, we can conclude that 

𝑋1:𝑛1 ≤𝑑𝑖𝑠𝑝 𝑇𝑟|𝑛2:𝐺
𝑋 , since 𝑋 has a DFR, which implies that 𝒥(𝑋1:𝑛1) ≤ 𝒥(𝑇𝑟|𝑛2:𝐺

𝑋 ) for 2𝑟 ≥ 𝑛2. 

Furthermore, the assumption 𝑋 ≤𝑑𝑖𝑠𝑝 𝑌  leads to 𝒥(𝑇𝑟|𝑛2:𝐺
𝑋 ) ≤ 𝒥(𝑇𝑟|𝑛2:𝐺

𝑌 )  according to 

Theorem 2.2. By combining these results, we complete the proof. □ 

3. Bounds on the extropy of consecutive systems 

Obtaining explicit expressions for the extropy of consecutive systems poses significant 

computational challenges, particularly for systems with many components or intricate lifetime 

distributions. In such cases, bounding techniques provide a practical and efficient alternative for 

characterizing the extropy of these systems. This section examines the use of bounding techniques 

to analyze the extropy of these systems. A theorem is presented that establishes explicit bounds on 

the extropy, supported by a concise and rigorous proof. These findings provide valuable insights into 

the behavior of the extropy and enable its application in scenarios where analytical solutions are 

impractical. 

Theorem 3.1. Let 𝑇𝑟|𝑛:𝐺
𝑋 ∈ 𝒞𝑋. 

(i) If 𝑀 = ℎ(𝑚) < ∞, where 𝑚 = sup{𝑥: ℎ(𝑥) ≤ 𝑀} designates the mode of the PDF ℎ , for 

2𝑟 ≥ 𝑛, we have 𝒥(𝑇𝑟|𝑛:𝐺) ≥ 𝑀𝒥(𝑈𝑟|𝑛:𝐺). 

(ii) For 2𝑟 ≥ 𝑛, we have 

𝐵2𝒥(𝑋) ≥ 𝒥(𝑇𝑟|𝑛:𝐺) ≥ 𝐷
2𝒥(𝑋), 

where 𝐵 = inf𝑣∈(0,1)𝑔𝑟|𝑛:𝐺(𝑣) and 𝐷 = sup𝑣∈(0,1)𝑔𝑟|𝑛:𝐺(𝑣). 

Theorem 3.1(i) provides a lower bound for the extropy of Tr∣n:G by utilizing 𝒥(𝑈𝑟|𝑛:𝐺) and the 

mode of the original distribution. 

Part (ii) of Theorem 3.1 provides bounds on Tr∣n:G with respect to the extropy of each component 

under certain conditions. These bounds are further illustrated by analyzing consecutive r-out-of-n:G 

systems with Weibull-distributed components. 

Example 3.1. Consider a linear consecutive 6-out-of-10:G system with the lifetime 𝑇6|10:𝐺 =

max(𝑋1:6, 𝑋2:7, … , 𝑋5:10), where 𝑋𝑗:𝑚 = min(𝑋𝑗 , … , 𝑋𝑚) for 1 ≤ 𝑗 < 𝑚 ≤ 10. For this analysis, 

it is assumed that 𝑋~𝑊(𝛼, 1) , as defined in (8). We can easily verify that 𝐵 =
inf𝑢∈(0,1)𝑔6|10:𝐺(𝑢) = 0 and 𝐷 = sup𝑢∈(0,1)𝑔6|10:𝐺(𝑢) = 2.837134. Furthermore, it is apparent 

that 𝒥(𝑈6|10:𝐺) = −1.062937. Notably, the mode of 𝑋 is given by 𝑚 = (
𝛼−1

𝛼
)

1

𝛼
. Consequently, 

we can establish lower bounds for 𝒥(𝑇6|10:𝐺) based on Theorem 3.1. Specifically, the lower bounds 

are given for X and m, respectively, by 
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𝒥(𝑇6|10:𝐺) ≥ 8.049331𝒥(𝑋), 

and 

𝒥(𝑇6|10:𝐺) ≥ −1.062937ℎ(𝑚), 

where 𝒥(𝑋) = −
α2

1
𝛼Γ(2−

1

𝛼
)

8
 for 𝛼 >

1

2
 and ℎ(𝑚) = 𝛼 (

𝛼−1

𝛼
)

α−1

𝛼
𝑒−

𝛼−1

𝛼  for 𝛼 > 0. One can see that 

Part (i) of Theorem 3.1 does not exist when 0 < 𝛼 ≤
1

2
. As illustrated in Figure 2, the lower bound 

from Part (i) of Theorem 3.1 is higher than that of Part (ii). Additionally, the figure indicates a 

decreasing trend for both lower bounds as 𝛼 increases. 

 

Figure 2. Extropy of a 6-out-of-10:G system having Weibull component lifetimes: 

exact bounds (solid line), and bounds of parts (i) (dotted line) and (ii) (dashed line), as 

given in Theorem 3.1. 

Unlike Theorem 3.1, this section introduces further bounds on the extropy of consecutive r-out-

of-n:G systems’ lifetimes, derived using the extropy and imprecision associated with a series of 

system lifetimes. First, let us recall the concept of the inaccuracy measure based on extropy as 

follows (see Hashempour and Mohammadi [34]). 

𝒥(X, Y) = −
1

2
∫
∞

0
ℎ𝑋(𝑥)ℎ𝑌(𝑥)𝑑𝑥, 

where ℎ𝑋 and ℎ𝑌 denote the PDFs of 𝑋 and 𝑌, respectively. 

Theorem 3.2. Let Tr|n:G
X ∈ 𝒞X. Then the following inequality holds: 

𝒥(𝑇𝑟|𝑛:𝐺) ≥ (𝑛 − 𝑟 + 1)2𝒥(𝑋1:𝑟) + (𝑛 − 𝑟)
2𝒥(𝑋1:𝑟+1),  

which is valid for 2𝑟 ≥ 𝑛. 

Proof. Another useful representation based on the relations in (5) is as follows: 
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𝒥(𝑇𝑟|𝑛:𝐺) = −
1

2
∫
∞

0

ℎ𝑟|𝑛:𝐺
2 (𝑡)𝑑𝑡 = −

1

2
∫
1

0

((𝑛 − 𝑟 + 1)ℎ1:𝑟(𝑡) − (𝑛 − 𝑟)ℎ1:𝑟+1(𝑡))
2𝑑𝑡 

= (𝑛 − 𝑟 + 1)2𝒥(𝑋1:𝑟) + (𝑛 − 𝑟)
2𝒥(𝑋1:𝑟+1) − (𝑛 − 𝑟 + 1)(𝑛 − 𝑟)𝒥(𝑋1:𝑟𝑋1:𝑟+1), 

where 

𝒥(𝑋1:𝑟𝑋1:𝑟+1) = −
1

2
∫
∞

0

ℎ1:𝑟(𝑡)ℎ1:𝑟+1(𝑡)𝑑𝑡 

represents the inaccuracy measure of ℎ1:𝑟(𝑥)  relative to ℎ1:𝑟+1(𝑥)  or vice versa. Since 

𝒥(𝑋1:𝑟𝑋1:𝑟+1) ≤ 0, one can see that −(𝑛 − 𝑟 + 1)(𝑛 − 𝑟)𝒥(𝑋1:𝑟𝑋1:𝑟+1) ≥ 0, and hence the lower 

bound is easily obtained. This completes the proof. 

□ 

In the next theorem, we establish bounds for consecutive r-out-of-n:G systems that relate to the 

hazard rate function of the components’ lifetimes. 

Theorem 3.3. Let Tr|n:G represent the lifetime of a consecutive r-out-of-n:G system, where the 

components’ lifetimes X1, X2, ⋯ , Xn follow a common failure rate function λ(x). For all 2r ≥ n, 

we have 

−
𝑟

4
𝔼(𝜆(𝑇𝑟|𝑛:𝐺

12 )) ≤ 𝒥(𝑇𝑟|𝑛:𝐺) ≤ −
2𝑟−𝑛

4
𝔼(𝜆(𝑇𝑟|𝑛:𝐺

12 )), 

where Tr|n:G
12  has the PDF hr|n:G

12 (x) = 2hr|n:G(x)Sr|n:G(x) for all x > 0. 

Proof. Note that 

𝜆𝑟|𝑛:𝐺(𝑥) = 𝜓𝑟,𝑛(𝑆(𝑥))𝜆(𝑥), 

where 

𝜓𝑟,𝑛(𝑧) =
𝑟(𝑛−𝑟+1)−(𝑟+1)(𝑛−𝑟)𝑧

(𝑛−𝑟+1)−(𝑛−𝑟)𝑧
, 0 < 𝑧 < 1. 

Given that 𝜓𝑟,𝑛′(𝑧) < 0 for 2𝑟 ≥ 𝑛 and 0 < 𝑧 < 1, it follows that 𝜓𝑟,𝑛(𝑧) is identified as 

a monotonically decreasing function of 𝑧. Given that 𝜓𝑟,𝑛(0) = 𝑟 and 𝜓𝑟,𝑛(1) = 2𝑟 − 𝑛, we have 

2𝑟 − 𝑛 ≤ 𝜓𝑟,𝑛(𝑆(𝑥)) ≤ 𝑟  for 0 < 𝐻(𝑥) < 1 , which implies that 2𝑟 − 𝑛𝜆(𝑥) ≤ 𝜆𝑟|𝑛:𝐺(𝑆(𝑥)) ≤

𝑟𝜆(𝑥), for 𝑥 > 0. Combining this result with the relationship between extropy and the hazard rate 

(as defined in Eq (2)) completes the proof.  □ 

Let us consider an illustrative example for the preceding theorem. 

Example 3.2. We now analyze a linear consecutive 2-out-of-3:G system characterized by its lifetime 

𝑇2|3:𝐺 = max(min(𝑋1, 𝑋2),min(𝑋2, 𝑋3)), 

where 𝑋𝑖 is iid, following an exponential distribution with the CDF 𝐻(𝑥) = 1 − 𝑒−𝜆𝑥 for 𝑥 > 0. 

The exponential distribution exhibits a constant hazard rate, 𝜆(𝑥) = 𝜆 , which implies that 

𝔼(𝜆(𝑇2|3:𝐺
12 )) = 𝜆. Applying Theorem 3.3 yields the following bounds on the extropy of the system 

−0.5𝜆 ≤ 𝒥(𝑇2|3:𝐺) ≤ −0.25𝜆. We note that the exact value is 𝒥(𝑇2|3:𝐺) = −0.35𝜆. 

The next theorem holds, provided that the expected value of the squared hazard rate function 

for X is finite. 
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Theorem 3.4. Given the conditions in Theorem 3.3, where 𝔼(λ2(X)) < ∞, for 2r ≥ n, it holds that 

𝒥(𝑇𝑟|𝑛:𝐺) ≥ −
1

2
√Ω𝑟,𝑛𝔼(𝜆

2(𝑋)), 

where Ω𝑟,𝑛 = ∫
1

0
(1 − 𝑣)2𝑔𝑟|𝑛:𝐺

4 (𝑣)𝑑𝑣. 

Proof. The PDF of 𝑇𝑟|𝑛:𝐺 can be rewritten as ℎ𝑟|𝑛:𝐺(𝑥) = ℎ(𝑥)𝑔𝑟|𝑛:𝐺(𝐻(𝑥)), while its failure rate 

function is given by 

𝜆𝑟|𝑛:𝐺(𝑥) = 𝜆(𝑥)
𝑆(𝑥)𝑔𝑟|𝑛:𝐺(𝐻(𝑥))

𝑆𝑟|𝑛:𝐺(𝑥)
, 

for 𝑥 > 0. Consequently, by (2) and using the Cauchy–Schwarz inequality, we obtain 

∫
∞

0

𝜆𝑟|𝑛:𝐺(𝑥)ℎ𝑟|𝑛:𝐺(𝑥)𝑆𝑟|𝑛:𝐺(𝑥)d𝑥 = ∫
∞

0

𝜆(𝑥)√ℎ(𝑥)√ℎ(𝑥)𝑆(𝑥)𝑔𝑟|𝑛:𝐺
2 (𝐻(𝑥))d𝑥

≤ (∫
∞

0

𝜆2(𝑥)ℎ(𝑥)d𝑥)

1
2

(∫
∞

0

(𝑆(𝑥)𝑔𝑟|𝑛:𝐺
2 (𝐻(𝑥)))

2
ℎ(𝑥)d𝑥)

= (𝔼(𝜆2(𝑋)))

1
2
(∫

1

0

(1 − 𝑣)2𝑔𝑟|𝑛:𝐺
4 (𝑣)𝑑𝑣)

1
2

1
2

. 

This equality arises from the variable substitution 𝑣 = 𝐻(𝑥), completing the proof. □ 

4. Results of characterization 

This section focuses on the characterization of extropy in consecutive r-out-of-n:G systems, 

starting with a lemma based on the Muntz-Szász Theorem, as referenced in Kamps [35]. 

Lemma 4.1. If ψ(x) is an integrable function on the finite interval (a, b) and ∫
b

a
xnjψ(x)dx =

0 for j ≥ 1, it follows that ψ(x) = 0 almost everywhere in (a, b), where {nj, j ≥ 1} represents a 

strictly increasing sequence of positive integers with ∑∞j=1
1

nj
= ∞. 

It is important to note that Lemma 4.1 is a well-established result in functional analysis, 

asserting that the set {𝑥𝑛1 , 𝑥𝑛2 , … ; 1 ≤ 𝑛1 < 𝑛2 < ⋯} constitutes a complete sequence. Notably, 

Hwang and Lin [36] extended the scope of the Müntz-Szász Theorem to the functions {𝜙𝑛𝑗(𝑥),
𝑛𝑗 ≥ 1}, where 𝜙(𝑥) is both absolutely continuous and monotonic over the interval (𝑎, 𝑏). 

Theorem 4.1. Let Tr|n:G
X  and Tr|n:G

Y  be the lifetimes of two consecutive r-out-of-n:G systems 

consisting of n iid component lifetimes with the common PDFs hX(x) and hY(x) and the CDFs 

HX(x) and HY(x), respectively. Here, HX and HY have the same family of distributions, but for a 

change in location, if and only if 

𝒥(𝑇𝑟|𝑛:𝐺
𝑋 ) = 𝒥(𝑇𝑟|𝑛:𝐺

𝑌 ), 𝑛/2 ≤ 𝑟 ≤ 𝑛. 

Proof. For the necessity part, since 𝐻𝑋 and 𝐻𝑌 belong to the same family of distributions, but for 

a change in location, 𝐻𝑌(𝑦) = 𝐻𝑋(𝑦 − 𝑎) for all 𝑎 ∈ ℝ. Thus, it is clear that 
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𝒥(𝑇𝑟|𝑛:𝐺
𝑌 ) = −

1

2
∫
∞

0

ℎ𝑌,𝑟|𝑛:𝐺
2 (𝑦)𝑑𝑦 = −

1

2
∫
∞

0

ℎ𝑋,𝑟|𝑛:𝐺
2 (𝑦 − 𝑎)𝑑𝑦 = −

1

2
∫
∞

0

ℎ𝑋,𝑟|𝑛:𝐺
2 (𝑥)d𝑥

= 𝒥(𝑇𝑟|𝑛:𝐺
𝑋 ). 

To prove the sufficiency part, it is clear that for odd values of 𝑛, 𝑟 ranges from [𝑛/2] + 1 to 

𝑛, so 𝑟 ∈ {[𝑛/2] + 1,… , 𝑛 − 1, 𝑛}. For even values of 𝑛, 𝑟 ranges from [𝑛/2] to 𝑛, resulting in 

𝑟 ∈ {[𝑛/2], … , 𝑛 − 1, 𝑛}, where [𝑥] represents the integer part of 𝑥. Therefore, we can express 𝑟 

as 𝑟 = 𝑛 − [
𝑖

2
] for 𝑖 = 1,2,… , 𝑛. Thus, we have 

𝑔𝑖|𝑛:𝐺(𝑢) = (𝑛 − [𝑖/2])([𝑖/2] + 1)(1 − 𝑢)
𝑛−[

𝑖
2
]−1 − (𝑛 − [𝑖/2] + 1)[𝑖/2](1 − 𝑢)𝑛−[

𝑖
2
], 

0 < 𝑢 < 1, for 𝑖 = 1,2,… , 𝑛. 

Using this relation, Eq (7) can be reformulated as 

𝒥(𝑇𝑟|𝑛:𝐺
𝑋 ) = 𝒥(𝑇𝑖|𝑛:𝐺

𝑋 ) = −
1

2
∫
1

0
𝑔𝑖|𝑛:𝐺
2 (𝑢)ℎ𝑋(𝐻𝑋

−1(𝑢))d𝑢,              (10) 

for 𝑖 = 1,2, … , 𝑛. The same argument also holds for 𝑌. Given the assumption that 𝒥(𝑇𝑟|𝑛:𝐺
𝑋 ) =

𝒥(𝑇𝑟|𝑛:𝐺
𝑌 ), using relation (10), we can write 

∫
1

0
𝑔𝑖|𝑛:𝐺
2 (𝑢)(ℎ𝑋(𝐻𝑋

−1(𝑢)) − ℎ𝑌(𝐻𝑌
−1(𝑢)))d𝑢 = 0.                 (11) 

Thus, it holds that 

∫
1

0
(1 − 𝑢)2𝑛𝜙𝑖,𝑛(𝑢)(ℎ𝑋(𝐻𝑋

−1(𝑢)) − ℎ𝑌(𝐻𝑌
−1(𝑢)))d𝑢 = 0, 

Where, for 0 < 𝑢 < 1, 

𝜙𝑖,𝑛(𝑢) = (1 − 𝑢)
−2([

𝑖

2
]+1) [(𝑛 − [

𝑖

2
]) ([

𝑖

2
] + 1) − (𝑛 − [

𝑖

2
] + 1) [

𝑖

2
] (1 − 𝑢)]

2
. 

By taking 𝑧 = 1 − 𝑢, Eq (11) can be rewritten as follows: 

∫
1

0
𝑧2𝑛𝜙𝑖,𝑛(1 − 𝑧)(ℎ𝑋(𝐻𝑋

−1(1 − 𝑧)) − ℎ𝑌(𝐻𝑌
−1(1 − 𝑧)))d𝑢 = 0. 

By applying Lemma 4.1 with the function 

𝜓(𝑥) = 𝜙𝑖,𝑛(1 − 𝑧)(ℎ𝑋(𝐻𝑋
−1(1 − 𝑧)) − ℎ𝑌(𝐻𝑌

−1(1 − 𝑧)), 

and considering the complete sequence {𝑧2𝑛, 𝑛 ≥ 1}, one can conclude that 

ℎ𝑋(𝐻𝑋
−1(1 − 𝑧)) = ℎ𝑌(𝐻𝑌

−1(1 − 𝑧), 𝑎. 𝑒.  𝑧 ∈ (0,1), 

or, equivalently, ℎ𝑋(𝐻𝑋
−1(𝑥)) = ℎ𝑌(𝐻𝑌

−1(𝑥)  for all 𝑥 ∈ (0,1).  It follows that 𝐻𝑋
−1(𝑥) =

𝐻𝑌
−1(𝑥) + 𝑑 for a constant 𝑑. This indicates that 𝑋 and 𝑌 share identical distribution functions 

except for a shift in location, thereby concluding the proof. □ 

As a consecutive n-out-of-n:G system represents a specific case of a series system, the 

subsequent corollary characterizes its extropy. 
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Corollary 4.1. Let Tn|n:G
X  and Tn|n:G

Y  represent two series systems with the shared PDFs hX(x) 

and hY(x), and the CDFs HX(x) and HY(x), respectively. In this case, HX and HY belong to the 

same distribution family, differing only by a location shift, if and only if 

𝒥(Tn|n:G
X ) = 𝒥(Tn|n:G

Y ),where n ≥ 1. 

An additional useful characterization is presented in the following theorem. 

Theorem 4.2. According to the conditions of Theorem 4.1, HX and HY are part of the same family 

of distributions, differing only in location and scale, if and only if 

𝒥(Tr|n:G
X )

𝒥(X)
=

𝒥(Tr|n:G
Y )

𝒥(Y)
, n/2 ≤ r ≤ n.                      (12) 

Proof. The necessity is evident; therefore, we now focus on establishing sufficiency. Using Eqs (9) 

and (10), we can deduce the following: 

(
𝒥(𝑇𝑟|𝑛:𝐺

𝑋 )

𝒥(𝑋)
) = (

𝒥(𝑇𝑖|𝑛:𝐺
𝑋 )

𝒥(𝑋)
) = −

1

2
∫
1

0
𝑔𝑖|𝑛:𝐺
2 (𝑢)

ℎ𝑋(𝐻𝑋
−1(𝑢))

𝒥(𝑋)
d𝑢.            (13) 

An analogous argument can be made for 𝒥(𝑇𝑟|𝑛:𝐺
𝑌 )/𝒥(𝑌). If Eq (12) applies to two cumulative 

distribution functions 𝐻𝑋 and 𝐻𝑌, it follows from Eq (13) that 

∫
1

0

𝑔𝑖|𝑛:𝐺
2 (𝑢)

ℎ𝑋(𝐻𝑋
−1(𝑢))

𝒥(𝑋)
d𝑢 = ∫

1

0

𝑔𝑖|𝑛:𝐺
2 (𝑢)

ℎ𝑌(𝐻𝑌
−1(𝑢))

𝒥(𝑌)
d𝑢. 

Let us set 

𝑐 =
𝒥(𝑌)

𝒥(𝑋)
=
∫
1

0
ℎ𝑌(𝐻𝑌

−1(𝑧))𝑑𝑧

∫
1

0
ℎ𝑋(𝐻𝑋

−1(𝑧))𝑑𝑧
. 

Following an approach similar to the proof of Theorem 4.1, we can express 

∫
1

0
𝑧2𝑛𝜙𝑖,𝑛(1 − 𝑧)(𝑐ℎ𝑋(𝐻𝑋

−1(1 − 𝑧)) − ℎ𝑌(𝐻𝑌
−1(1 − 𝑧)))d𝑢 = 0. 

The proof concludes by employing arguments analogous to those in Theorem 4.1. 

□ 

Applying Theorem 4.2, we obtain the following corollary. 

Corollary 4.2. Assuming the conditions in Corollary 4.1, HX  and HY  are part of the same 

distribution family, differing only in location and scale, if and only if 

𝒥(Tn|n:G
X )

𝒥(X)
=

𝒥(Tn|n:G
Y )

𝒥(Y)
, for all n ≥ 1. 

The following theorem uses the extropy of consecutive r-out-of-n:G systems to characterize the 

exponential distribution. 

Theorem 4.3. Let Tr|n:G
X ∈ 𝒞X. In this case, the random variable X has an exponential distribution 

with the parameter λ if and only if  
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(Tr|n:G
X ) =

(5𝑟2−4𝑟𝑛+𝑟+𝑛2)

2𝑟+1
𝒥(𝑋), 𝑛/2 ≤ 𝑟 ≤ 𝑛.                  (14) 

Proof. Given an exponentially distributed random variable 𝑋, its extropy, directly calculated using 

(1), is 𝒥(𝑋) = −
𝜆

4
. Furthermore, since ℎ(𝐻−1(𝑢)) = 𝜆(1 − 𝑢), application of Eq (7) yields 

𝒥(𝑇𝑟|𝑛:𝐺) = −
1

2
∫
1

0

𝑔𝑟|𝑛:𝐺
2 (𝑢)ℎ(𝐻−1(𝑢))d𝑢 = −

𝜆

2
∫
1

0

𝑔𝑟|𝑛:𝐺
2 (𝑢)(1 − 𝑢)d 

= 2𝒥(𝑋) ∫
1

0
𝑔𝑟|𝑛:𝐺
2 (𝑢)(1 − 𝑢)d𝑢 =

(5𝑟2−4𝑟𝑛+𝑟+𝑛2)

2𝑟+1
𝒥(𝑋), 

where the third equality is obtained by noting that 

∫
1

0
𝑔𝑟|𝑛:𝐺
2 (𝑢)(1 − 𝑢)d𝑢 =

(5𝑟2−4𝑟𝑛+𝑟+𝑛2)

2(2𝑟+1)
.                  (15) 

To prove sufficiency, we assume that Eq (14) holds for a fixed value of r. By following the proof of 

Theorem 4.1 and applying the result from Eq (15), we obtain the following relation: 

−
1

2
∫
1

0
𝑔𝑖|𝑛:𝐺
2 (𝑢)ℎ(𝐻−1(𝑢)𝑑𝑢 = 2𝒥(𝑋) ∫

1

0
𝑔𝑖|𝑛:𝐺
2 (𝑢)(1 − 𝑢)d𝑢, 

which is equivalent to 

∫
1

0
𝑔𝑖|𝑛:𝐺
2 (𝑣)[ℎ(𝐻−1(𝑢) + 4𝒥(𝑋)(1 − 𝑢)]d𝑢 = 0, 

where 

𝑔𝑖|𝑛:𝐺(𝑣) = (𝑛 − [𝑖/2])([𝑖/2] + 1)(1 − 𝑢)
𝑛−[

𝑖

2
]−1 − (𝑛 − [𝑖/2] + 1)[𝑖/2](1 − 𝑢)𝑛−[

𝑖

2
]
, 

0 < 𝑣 < 1, for 𝑖 = 1,2, … , 𝑛. 

Thus, it holds that 

∫
1

0
(1 − 𝑢)2𝑛𝜙𝑖,𝑛(𝑢)[ℎ(𝐻

−1(𝑢) + 4𝒥(𝑋)(1 − 𝑢)]𝑑𝑢 = 0, 

where, for 0 < 𝑢 < 1, 

𝜙𝑖,𝑛(𝑢) = (1 − 𝑢)
−2([𝑖/2]+1)[(𝑛 − [𝑖/2])([𝑖/2] + 1) − (𝑛 − [𝑖/2] + 1)[𝑖/2](1 − 𝑢)]2, 

As in the proof of Theorem 4.1, this implies that 

∫
1

0
𝑧2𝑛𝜙𝑖,𝑛(1 − 𝑧)[ℎ(𝐻

−1(1 − 𝑧)) + 4𝒥(𝑋)𝑧]𝑑𝑧 = 0. 

Applying Lemma 4.1 to the function 

𝜓(𝑥) = 𝜙𝑖,𝑛(1 − 𝑧)[ℎ(𝐻
−1(1 − 𝑧)) + 4𝒥(𝑋)𝑧], 

and utilizing the complete sequence {𝑧2𝑛, 𝑛 ≥ 1}, we can deduce that 

ℎ(𝐻−1(1 − 𝑧)) = −4𝒥(𝑋)𝑧, 𝑎. 𝑒. 𝑧 ∈ (0,1), 

which is equivalent to 

ℎ(𝐻−1(𝑤)) = −4𝒥(𝑋)(1 − 𝑤), 𝑎. 𝑒. 𝑤 ∈ (0,1). 



6053 

AIMS Mathematics  Volume 10, Issue 3, 6040–6068. 

by taking 𝑤 = 1 − 𝑧. This implies that 

𝑑𝐻−1(𝑤)

𝑑𝑤
=

1

ℎ(𝐻−1(𝑤))
=

1

−4(1−𝑤)𝒥(𝑋)
. 

Integrating the equation from 0 to 𝑥  gives 𝐻−1(𝑥) =
log(1−𝑥)

4𝒥(𝑋)
+ 𝑑,  where 𝑑  represents an 

arbitrary constant. If we apply the boundary condition lim𝑥→0𝐻
−1(𝑥) = 0, it follows that 𝑑 = 0. 

Consequently, this leads to 𝐻−1(𝑥) =
log(1−𝑥)

4𝒥(𝑋)
 for 𝑥 > 0.  This implies the CDF 𝐻(𝑥) = 1 −

𝑒4𝒥(𝑌)𝑥, 𝑥 > 0, confirming that 𝑋~𝐸(−4𝒥(𝑋)), establishing the theorem. □ 

5. Nonparametric inference 

Here, we present a nonparametric methodology for the estimation of the extropy of a 

consecutive r-out-of-n:G system using a series of absolutely continuous, non-negative iid random 

variables 𝑋1, 𝑋2, … , 𝑋𝑁.  Let 𝑋1:𝑁 ≤ 𝑋2:𝑁 ≤ ⋯ ≤ 𝑋𝑁:𝑁  symbolize the order statistics of this 

random sample. As shown before, for 2𝑟 ≥ 𝑛, the extropy of 𝑇𝑟|𝑛:𝐺 from (7) can be written as 

𝒥(𝑇𝑟|𝑛:𝐺) = −
1

2
∫
1

0
𝑔𝑟|𝑛:𝐺
2 (𝑢)ℎ(𝐻−1(𝑢))d𝑢 = −

1

2
∫
1

0
𝑔𝑟|𝑛:𝐺
2 (𝑢) [

𝑑𝐻−1(𝑢)

d𝑢
]
−1

d𝑢. 

For estimating 𝒥(𝑇𝑟|𝑛:𝐺), we use an estimator for 𝑑𝐻−1(𝑢)/d𝑢 as proposed by Vasicek [36]. 

This method replaces the differential operator with a difference. The estimator for 𝒥(𝑇𝑟|𝑛:𝐺) is 

derived and can be represented as follows: 

𝐽(𝑇𝑟|𝑛:𝐺) = −
1

2𝑁
∑

𝑁

𝑖=1

(𝑔𝑟|𝑛:𝐺 (
𝑖

𝑁 + 1
))

2
2𝑚

𝑁(𝑋𝑖+𝑚:𝑁 − 𝑋𝑖−𝑚:𝑁)
 

= −
1

2𝑁
∑𝑁𝑖=1 (𝑟(𝑛 − 𝑟 + 1) (1 −

𝑖

𝑁+1
)
𝑟−1

− (𝑟 + 1)(𝑛 − 𝑟) (1 −
𝑖

𝑁+1
)
𝑟

)
2

×
2𝑚

𝑁(𝑋𝑖+𝑚:𝑁−𝑋𝑖−𝑚:𝑁)
, (16) 

where any 𝑚 that is lower than 𝑁/2, known as the window size, is a positive integer, and in 

scenarios where 𝑖 − 𝑚 ≤ 1, 𝑋𝑖−𝑚:𝑁 = 𝑋1:𝑁  and 𝑖 + 𝑚 ≥ 𝑁, 𝑋𝑖+𝑚:𝑁 = 𝑋𝑁:𝑁.  For ease of 

computation, the value of 𝑚 is determined using the heuristic formula proposed in [37] 

𝑚 = [√𝑁 + 0.5]. 

Now, we assess the performance of 𝐽(𝑇𝑟|𝑛:𝐺)  using simulated standard exponential data by 

examining its average bias and mean squared error (MSE). These metrics were computed for various 

sample sizes (N=20, 30, 40, 50, 100) and parameter values of r and n. The estimates were based 

on 5000 replicates. The results are shown in Table 1. The table reveals that the MSE of the extropy 

estimator decreases as the sample size grows. Conversely, the bias demonstrates the opposite trend, 

increasing with larger sample sizes. This finding suggests that while the estimator's precision and 

reliability improve with larger sample sizes, the slight increase in bias should be accounted for in 

practical applications. 
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Table 1. Performance of extropy estimators for r-out-of-n:G systems. 

N 20 30 40 50 100 

n r Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

5 

3 -0.181145 0.085499 -0.128658 0.044825 -0.108951 0.028227 -0.088738 0.020909 -0.056517 0.008277 

4 -0.446195 0.588884 -0.353662 0.331967 -0.326550 0.234180 -0.286476 0.171004 -0.204887 0.086303 

5 -0.710531 1.574999 -0.631676 1.089014 -0.586988 0.783479 -0.537342 0.636019 -0.439801 0.351538 

6 

3 -0.112163 0.045574 -0.078793 0.022208 -0.061578 0.014417 -0.048807 0.009873 -0.028456 0.004623 

4 -0.337212 0.329122 -0.255551 0.167940 -0.217995 0.111119 -0.189092 0.083114 -0.126828 0.035937 

5 -0.598991 1.254406 -0.521465 0.675481 -0.457323 0.486124 -0.428518 0.397112 -0.314817 0.195990 

6 -0.801058 2.550876 -0.791626 1.778255 -0.720829 1.241665 -0.684045 1.027787 -0.568892 0.597331 

7 

4 -0.253541 0.170353 -0.181460 0.086342 -0.143534 0.055818 -0.119217 0.038978 -0.072617 0.015047 

5 -0.514908 0.818061 -0.414664 0.434816 -0.350406 0.285925 -0.307805 0.219571 -0.219152 0.100408 

6 -0.714558 1.838775 -0.653048 1.239806 -0.618227 0.883754 -0.550797 0.693000 -0.456077 0.391969 

7 -0.877706 3.421076 -0.917753 2.377201 -0.865573 1.729106 -0.840499 1.480399 -0.702916 0.944211 

8 

4 -0.196645 0.107419 -0.129543 0.049289 -0.094905 0.031563 -0.080120 0.022681 -0.044789 0.009303 

5 -0.420839 0.468023 -0.334363 0.253069 -0.267086 0.159740 -0.225139 0.129197 -0.150272 0.047812 

6 -0.665589 1.421686 -0.570275 0.817515 -0.496911 0.558862 -0.450902 0.447029 -0.351760 0.213454 

7 -0.847470 2.504890 -0.815353 1.782421 -0.761208 1.301092 -0.701632 1.109010 -0.596913 0.620492 

8 -0.965621 4.495783 -0.996679 3.032026 -0.990291 2.610200 -0.993252 2.152731 -0.866506 1.319012 

5.1. An application to image processing 

Information-theoretic measures have gained significant popularity in defining optimized cost 

functions for image alignment. Rao et al. [37] proposed cross-cumulative residual entropy as a 

measure to tackle both unimodal and multimodal alignment challenges. In a related field, Tahmasebi 

et al. [38] proposed a weighted extended cumulative entropy estimator that is used to evaluate image 

quality without the need to know the true reference or original versions of the images. In addition, 

Toomaj and Atabay [39] and Toomaj [40] investigated the application of cumulative residual Tsallis 

entropy and generalized cumulative residual Tsallis entropy in image quality assessments and 

demonstrated the potential of these entropy measures for image quality and fidelity assessments. 

In this study, we illustrate an application of nonparametric estimation of the extropy of a 

consecutive system in the field of image processing. The dataset comprises a grayscale reference 

image labeled z, representing boats, and five modified versions of the reference image labeled 

𝑧1, 𝑧2, … , 𝑧5. Figure 3 shows images from the dataset, each measuring 768 pixels in width and 512 

pixels in height. The pixel values, which represent the intensity of the grayscale, were originally 

between 0 and 255. For the analysis and calculations, these values were normalized to a standardized 

range of 0 to 1, where 0 represents black and 1 represents white. This normalization ensures 

consistency and uniformity in image processing and enables accurate and comparable results for 

different analysis methods. 

The means and standard deviations of the gray levels of these modified images are presented in 

Table 2. 

To evaluate and compare the degree of uncertainty in extropy between the original image and 

its customized versions, we applied the method described in Eq (16) to estimate the extropy for all 



6055 

AIMS Mathematics  Volume 10, Issue 3, 6040–6068. 

six images. The extropy was calculated for various values of r and n, with calculations performed 

individually for each image. Figure 4 presents the grayscale histograms of the images. 

 
Figure 3. Visual representation of modified boats: sample image. 

Table 2. Average gray levels and standard deviations for the images shown in Figure 3. 

Numbers Pictures Mean Standard deviation 

(i) z (reference image) 0.51689 0.14495 

(ii) z₁ =  z +  0.3 0.81689 0.14495 

(iii) z₂ =  √0.8z +  0.3 0.84173 0.07074 

(iv) z₃ =  z³ 0.16949 0.12293 

(v) z₄ =  log(z)  +  2√𝑧 0.71048 0.56383 

(vi) z₅ =  |x −  0.5| 0.11327 0.09201 

 

Figure 4. Histograms of boats with their adjustments. 
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A comparison of Figures 3 and 4 reveals that the adjusted image z1 is the most similar to the 

original image z, followed by z2. In contrast, z3, z4, and z5 exhibit the largest deviations from the 

original image z. Figure 4 presents the histograms of the grayscale levels for each image. Table 3 

provides the estimated extropy values for various combinations of r and n across all six images. The 

estimated extropy values for the adjusted images z1 and z2 closely align with the extropy value of the 

original image, as shown in Table 3. 

Table 3. The values of 𝐽(𝑇𝑟|𝑛:𝐺) for values of 𝑟 and 𝑛. 

Pictures (i) (ii) (iii) (iv) (𝑣) (𝑣𝑖) 

𝐽(𝑇2∣3:𝐺) -1.4190 -1.4190 -2.9873 -2.0373 -0.4231 -2.9155 

𝐽(𝑇3∣3:𝐺) -1.1818 -1.1818 -2.3428 -3.2871 -0.2958 -5.2213 

𝐽(𝑇2∣4:𝐺) -1.8447 -1.8447 -3.9429 -2.1883 -0.5731 -2.8251 

𝐽(𝑇3∣4:𝐺) -1.2781 -1.2781 -2.5996 -2.6448 -0.3456 -4.2030 

𝐽(𝑇4∣4:𝐺) -1.1957 -1.1957 -2.3074 -4.2988 -0.2747 -6.7465 

𝐽(𝑇3∣5:𝐺) -1.4845 -1.4845 -3.0776 -2.3718 -0.4241 -3.6914 

𝐽(𝑇4∣5:𝐺) -1.2285 -1.2285 -2.4256 -3.4657 -0.3037 -5.5730 

𝐽(𝑇5∣5:𝐺) -1.2316 -1.2316 -2.3238 -5.4227 -0.2623 -8.3095 

𝐽(𝑇8∣9:𝐺) -1.3610 -1.3610 -2.4778 -8.0456 -0.2546 -11.7062 

𝐽(𝑇9∣9:𝐺) -1.4896 -1.4896 -2.6473 -10.7175 -0.2533 -14.7816 

𝐽(𝑇8∣10:𝐺) -1.3306 -1.3306 -2.4553 -6.9550 -0.2618 -10.4628 

𝐽(𝑇9∣10:𝐺) -1.4284 -1.4284 -2.5661 -9.4015 -0.2538 -13.3158 

𝐽(𝑇10∣10:𝐺) -1.5698 -1.5698 -2.7627 -12.1812 -0.2563 -16.4218 

Conversely, the extropy values for images z3, z4, and z5 significantly deviate from the extropy 

value of the original image as the parameters r and n increase. Moreover, the results indicate that the 

estimated extropy is influenced by the skewness of the data, with a pronounced sensitivity toward 

left skewness. This observation underscores the utility of extropy as a metric for quantifying 

uncertainty in image processing tasks. It enables meaningful comparisons between images and 

facilitates the measurement of discrepancies within a single image, thereby providing valuable 

insights into uncertainty assessments. 

5.2. Test of exponentiality 

The widespread applicability of the exponential distribution has led researchers to develop a 

variety of test statistics for evaluating exponentiality. These statistics are based on various 

fundamental concepts from the field of statistics. The main objective is to verify whether the random 

variable X follows an exponential distribution. Let 𝑋1, 𝑋2, … , 𝑋𝑁 denote a random sample of size 

𝑁  drawn from the CDF 𝐻.  Let 𝑋1:𝑁 ≤ 𝑋2:𝑁 ≤ ⋯ ≤ 𝑋𝑁:𝑁  represent the corresponding order 
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statistics. Assuming that ℋ0 signifies the CDF of the exponential distribution, defined as 𝐻0(𝑥) =

1 − 𝑒−𝜆𝑥, for 𝑥 > 0, the primary hypothesis under consideration is 

ℋ0: 𝐻(𝑥) = 𝐻0(𝑥), 𝑣𝑠.ℋ1: 𝐻(𝑥) ≠ 𝐻0(𝑥). 

Extropy has recently garnered considerable attention within the research community as a 

valuable metric for goodness-of-fit testing. Qin and Jia [22] introduced two consistent extropy 

estimators based on the concept of distances and developed a goodness-of-fit test for the uniform 

distribution using the more effective estimator. In a related study, Xiong et al. [41] utilized the unique 

properties of classical datasets to derive a characterization result for the exponential distribution, 

leading to the development of a novel exponentiality test. Their research detailed the formulation of 

the test statistic and emphasized the significant advantage of the proposed method, showcasing its 

strong performance with small sample sizes. 

Building on these developments, Jose and Sathar [42] introduced a new exponentiality test 

derived from a characterization result based on the extropy of lower k-record values. In this section, 

we extend these advancements by examining the extropy of consecutive systems. Theorem 4.3 

demonstrates that the exponential distribution can be uniquely characterized by the extropy of 

consecutive systems. On the basis of this result, we propose a new test statistic for uniformity, 

denoted 𝑇𝐸𝑋𝑟,𝑛 and defined as follows: 

𝑇𝐸𝑋𝑟,𝑛 = 𝒥(𝑇𝑟|𝑛:𝐺
𝑋 ) −

(5𝑟2−4𝑟𝑛+𝑟+𝑛2)

2𝑟+1
𝒥(𝑋), 

with 2𝑟 ≥ 𝑛. Directly for 2𝑟 ≥ 𝑛 , Theorem 4.3 implies that 𝑇𝐸𝑋𝑟,𝑛 = 0 if and only if 𝑋  is 

exponentially distributed. This fundamental property establishes 𝑇𝐸𝑋𝑟,𝑛  as a viable measure of 

exponentiality and a suitable candidate for a test statistic. For a given random sample 𝑋1, 𝑋2, … , 𝑋𝑁, 

the estimator 𝑇𝐸𝑋̂𝑟,𝑛 of 𝑇𝐸𝑋𝑟,𝑛 serves as a viable test statistic. Substantial deviations of 𝑇𝐸𝑋̂𝑟,𝑛 

from its expected value under the null hypothesis (assuming an exponential distribution) suggest 

nonexponentiality, leading to rejection of the null hypothesis. 

To illustrate, we focus on the specific case where 𝑛 = 3 and 𝑟 = 2, utilizing 𝑇𝐸𝑋̂2,3 as the 

test statistic. To derive an expression for 𝑇𝐸𝑋̂2,3, we recall that Qiu and Jia’s [22] estimator for 

𝒥(𝑋), denoted 𝐽𝑄2𝑚𝑛 and defined by 

𝐽𝑄2𝑚𝑛 = −
1

2𝑁
∑𝑁𝑖=1

𝑐𝑖𝑚

𝑁(𝑋𝑖+𝑚:𝑁−𝑋𝑖−𝑚:𝑁)
, 

for all 𝑖 =  𝑚 +  1,𝑚 +  2, . . . , 𝑁 −  𝑚, where 𝑚 is a positive integer smaller than 
𝑛

2
, which is 

known as the window size. Here, 𝑐𝑖 depends on the window size 𝑚 and the sample size N, and is 

defined as 

𝑐𝑖 =

{
 
 

 
 1 +

𝑖 − 1

𝑚
if 1 ≤ 𝑖 ≤ 𝑚,

2 if 𝑚 + 1 ≤ 𝑖 ≤ 𝑁 −𝑚

1 +
𝑁 − 𝑖

𝑚
if 𝑁 − 𝑚 + 1 ≤ 𝑖 ≤ 𝑁.

, 

Therefore, a reasonable estimator for 𝑇𝐸𝑋̂2,3  can be derived using Eq (16) and the 𝐽𝑄2𝑚𝑛 

estimator as follows: 
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𝑇𝐸𝑋̂2,3 = 𝒥̂(𝑇2|3:𝐺
𝑋 ) − 1.4𝐽𝑄2𝑚𝑛

= −
1

2𝑁
∑

𝑁

𝑖=1

(𝑔2|3:𝐺 (
𝑖

𝑁 + 1
))

2
2𝑚

𝑁(𝑋𝑖+𝑚:𝑁 − 𝑋𝑖−𝑚:𝑁)
 +
1.4

2𝑁
∑

𝑁

𝑖=1

𝑐𝑖𝑚

𝑁(𝑋𝑖+𝑚:𝑁 − 𝑋𝑖−𝑚:𝑁)

= −
1

2𝑁2
∑

𝑁

𝑖=1

[2 (4 (1 −
𝑖

𝑁 + 1
) − 3 (1 −

𝑖

𝑁 + 1
)
2

)

2

− 1.4𝑐𝑖]
𝑚

(𝑋𝑖+𝑚:𝑁 − 𝑋𝑖−𝑚:𝑁)
. 

Ensuring the consistency of an estimator is essential, especially when evaluating estimators for 

parametric functions. The following theorem justifies the result presented in Eq (13). The proof 

follows a similar approach as Theorem 1 in the work of Vasicek [36]. It is noteworthy that Park [43] 

and Xiong et al. [41] have also used the consistency proof method of Vasicek [36] to demonstrate 

the consistency of their respective proposed test statistics. 

Theorem 5.1. Suppose X1, X2, … , XN  represents a random sample of size N  taken from a 

population with the PDF h and the CDF H and assume that the random variable has finite variance. 

Then TEX̂2,3 →
p
TEX2,3 as N → +∞,m → +∞, and 

m

N
→ 0, where →

p
 stands for the convergence 

in probability. 

Proof. From Part (2) of Theorem 2.1 in Qiu and Jia [22], we establish the consistency of their 

estimator, demonstrating that 𝐽𝑄2𝑚𝑛 →
𝑝
𝒥(𝑋) as 𝑁 → +∞,𝑚 → +∞, and 

𝑚

𝑁
→ 0. Furthermore, 

by applying the methodology employed in Theorem 1 of Vasicek [36], it can be shown that 

𝒥̂(𝑇2|3:𝐺
𝑋 ) →

𝑝
𝒥(𝑇2|3:𝐺

𝑋 ) under the same asymptotic conditions. Leveraging the well-known properties 

of convergence in probability, these individual convergences collectively imply that 

𝑇𝐸𝑋̂2,3 →
𝑝
𝑇𝐸𝑋2,3 as 𝑁 → +∞,𝑚 → +∞, and 

𝑚

𝑁
→ 0, thus completing the theorem. □ 

In the next result, we show that the root mean square error (RMSE) of 𝑇𝐸𝑋̂2,3  remains 

invariant under shifts in the random variable 𝑋. However, this invariance property does not extend 

to scale transformations. The proof of these assertions can be readily derived by adapting the 

arguments presented by Ebrahimi et al. [44]. 

Theorem 5.2. Assume that X1, X2, … , XN is a random sample of size N taken from a population 

with the PDF h and the CDF H and Yi = aXi + b, a > 0, b ∈ R. We denote the estimators for 

TEX2,3  on the basis of Xi  and Yi  as TEX̂2,3
X  and TEX̂2,3

Y ,  respectively. Then the following 

properties apply: 

(𝑖). 𝔼(𝑇𝐸𝑋̂2,3
𝑌 ) = 𝔼(𝑇𝐸𝑋̂2,3

𝑋 )/𝑎, 

(𝑖𝑖). 𝑉𝑎𝑟(𝑇𝐸𝑋̂2,3
𝑌 ) = 𝑉𝑎𝑟(𝑇𝐸𝑋̂2,3

𝑋 )/𝑎2, 

(𝑖𝑖𝑖). 𝑅𝑀𝑆𝐸(𝑇𝐸𝑋̂2,3
𝑌 ) = 𝑅𝑀𝑆𝐸(𝑇𝐸𝑋̂2,3

𝑋 )/𝑎. 

Under the null hypothesis, ℋ0, the value of 𝑇𝐸𝑋̂2,3 asymptotically converges to zero as the 

sample size 𝑁 approaches infinity. Conversely, under an alternative distribution with an absolute 

CDF 𝐻, the value of 𝑇𝐸𝑋̂2,3 converges to a positive value as 𝑁 → +∞. On the basis of these 

asymptotic properties, we reject the null hypothesis at a given significance level 𝛼 for a finite 

sample size 𝑁  if the observed value of the test statistic 𝑇𝐸𝑋̂2,3  exceeds the critical value 

𝑇𝐸𝑋̂2,3(1 − 𝛼). The asymptotic distribution of 𝑇𝐸𝑋̂2,3 is intricate and analytically intractable due 
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to its dependence on both the sample size 𝑁  and the window parameter 𝑚.  To address this 

challenge, we employed a Monte Carlo simulation approach. Specifically, we generated 10,000 

samples of sizes 𝑁 = 5,10,20,30,40,50,100 from the standard exponential distribution under the 

null hypothesis. For each sample size, we determined the (1 − 𝛼)-th quantile of the simulated 

𝑇𝐸𝑋̂2,3 values to establish the critical value for significance levels of 𝛼 = 0.05,0.01, while varying 

the window size 𝑚 from 2 to 30. Tables 4 and 5 present the resulting critical values for the sample 

sizes and significance levels. 

Table 4. Critical values for the 𝑇𝐸𝑋̂2,3 statistic at a significance level of 𝛼 = 0.05. 
N 

m 
5 10 20 30 40 50 100 

2 0.392760 0.426261 0.408188 0.370928 0.345209 0.325547 0.276111 

3  0.256732 0.310455 0.298978 0.280804 0.266413 0.233605 

4  0.167984 0.262434 0.260041 0.254924 0.247686 0.217291 

5   0.220400 0.240972 0.234169 0.226952 0.209230 

6   0.190010 0.221079 0.223800 0.224075 0.203623 

7   0.162221 0.204084 0.211321 0.212932 0.201040 

8   0.137848 0.186883 0.200525 0.206573 0.196061 

9   0.112155 0.170815 0.190179 0.197469 0.192268 

10    0.156946 0.180424 0.188462 0.188866 

11    0.143658 0.170753 0.181926 0.186943 

12    0.130159 0.162522 0.175824 0.182534 

13    0.114942 0.151853 0.168501 0.182272 

14    0.100294 0.143133 0.160954 0.179480 

15     0.133609 0.154681 0.177512 

16     0.124017 0.148916 0.176364 

17     0.113931 0.141795 0.173249 

18     0.105489 0.134651 0.171756 

19     0.095544 0.128092 0.168481 

20      0.121033 0.165106 

21      0.112600 0.163181 

22      0.108014 0.160569 

23      0.100303 0.157498 

24      0.094096 0.156319 

25       0.152628 

26       0.150252 

27       0.148062 

28       0.145747 

29       0.142582 

30       0.140512 
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Table 5. Critical values for the 𝑇𝐸𝑋̂2,3 statistic at a significance level of 𝛼 = 0.01. 
N 

m 

5 10 20 30 40 50 100 

2 1.053178 0.938843 0.772869 0.640493 0.528622 0.459050 0.362216 

3  0.479087 0.492840 0.420595 0.384199 0.366036 0.288657 

4  0.268607 0.380484 0.355607 0.337965 0.313871 0.260337 

5   0.314430 0.325836 0.316929 0.299652 0.246397 

6   0.263398 0.297401 0.282599 0.276863 0.242613 

7   0.220610 0.260667 0.268228 0.266767 0.231963 

8   0.185270 0.240120 0.252814 0.251865 0.229389 

9   0.153756 0.216610 0.237591 0.242775 0.225811 

10    0.199846 0.226231 0.230457 0.220759 

11    0.181437 0.208671 0.222451 0.218314 

12    0.159556 0.193013 0.218025 0.214407 

13    0.143145 0.186961 0.200991 0.209588 

14    0.132947 0.176258 0.196367 0.209358 

15     0.164229 0.189409 0.204428 

16     0.149523 0.179248 0.201796 

17     0.142593 0.169621 0.196137 

18     0.128815 0.158624 0.195853 

19     0.118047 0.151383 0.193241 

20      0.142305 0.191017 

21      0.134568 0.188609 

22      0.128321 0.183087 

23      0.117420 0.182034 

24      0.111446 0.178733 

25       0.173922 

26       0.171182 

27       0.167072 

28       0.163905 

29       0.160764 

30       0.156246 

5.3. Power comparisons 

A Monte Carlo simulation study involving nine alternative probability distributions was 

performed to evaluate the significance of the 𝑇𝐸𝑋̂2,3 test. For every sample size N, a total of 10,000 

samples of size N were drawn from each of the alternative distributions. 

The 𝑇𝐸𝑋̂2,3 statistic was computed for each generated sample. The significance of the 𝑇𝐸𝑋̂2,3 

test at a given significance level α was determined by calculating the proportion of the 10,000 

samples whose test values surpassed the critical value. 

The performance and efficiency of the 𝑇𝐸𝑋̂2,3 -based test was assessed by comparing its 

performance with various established tests for exponentiality reported in the literature. 
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Table 6 provides the PDFs of the alternative distributions considered. The distributions and 

their parameters used in the simulations align with those utilized by Jose and Sathar [42]. 

Table 6. Alternative probability distributions for evaluating the power of the test statistic. 

Distribution Probability density function Support Notation 

Weibull 
𝑓(𝑥) =

𝛼

𝛽
(
𝑥

𝛽
)
𝛼−1

𝑒
−(
𝑥
𝛽
)
𝛼

 
𝑥 > 0, 𝛽, 𝜎 > 0 𝑊(𝛼, 𝛽) 

Gamma 
𝑓(𝑥) =

1

𝛽𝛼Γ(𝛼)
𝑥𝛼−1𝑒−𝑥/𝛽 

𝑥 > 0, 𝛼, 𝛽 > 0 𝐺(𝛼, 𝛽) 

Uniform 
𝑓(𝑥) =

1

𝛽 − 𝛼
 

𝛼 ≤ 𝑥 ≤ 𝛽 𝑈(𝛼, 𝛽) 

Half-normal 
𝑓(𝑥) =

√2

𝜆√𝜋
𝑒
−
𝑥2

2𝜆2 
𝑥 > 0, 𝜆 > 0 𝐻𝑁(𝜆) 

Log-normal 
𝑓(𝑥) =

1

𝑥𝜆√2𝜋
𝑒
−
(ln𝑥−𝜇)2

2𝜆2  
𝑥 > 0, 𝜆 > 0, 𝜇 ∈ 𝑅 𝐿𝑁(𝜇, 𝜆) 

The selected distributions represent a diverse range of reliability behaviors commonly 

encountered in applied settings. The Weibull and Gamma distributions were chosen, as they are 

widely used in modeling lifetimes, with the Weibull distribution capturing both increasing and 

decreasing failure rates through its shape parameter, and the Gamma distribution serving as a flexible 

alternative for modeling skewed lifetime data. The uniform distribution is included as a contrasting 

case where all failure times are equally probable, providing a baseline for comparison. The half-

normal distribution, often used in reliability analyses and statistical modeling, represents cases where 

the failure times are positively skewed. By considering these distributions, we ensured a 

comprehensive evaluation of extropy’s performance in different stochastic scenarios. 

Now, we compare the efficiency of the new proposed test based on the 𝑇𝐸𝑋̂2,3 statistic against 

established tests for exponentiality available in the literature, as detailed in Table 7. 

Table 7. Competing tests for exponentiality. 

Test Reference Notation 

1 

2 

3 

Xiong et al. [41] 

Jose and Sathar [42] 

Fortiana and Grané [45] 

D1 

D2 

D3 

4 Choi et al. [46] D4 

5 Mimoto and Zitikis [47] D5 

6 Volkova [48] D6 

7 Zamanzade and Arghami [49] D7 

8 Baratpour and Rad [50] D8 

9 Noughabi and Arghami [51] D9 

10 Volkova and Nikitin [52] D10 

11 Torabi et al. [53] D11 

The efficacy of the 𝑇𝐸𝑋̂2,3 statistic is influenced by the chosen window size, 𝑚. Selecting an 

appropriate 𝑚 value is crucial for achieving adequate adjusted statistical power. On the basis of 
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simulations across different sample sizes, a heuristic formula was derived, namely 𝑚 = [0.4𝑁], 

where [𝑥] represents the largest integer less than or equal to x. This formula provides a practical 

guideline for selecting 𝑚, aiming to ensure robust and generally effective power performance across 

diverse distributions. 

To evaluate the performance of 𝑇𝐸𝑋̂2,3, we selected 10 competing tests for exponentiality and 

assessed their power against various alternative distributions. 

Notably, Xiong et al. [41] proposed a test statistic based on the extropy of classical records, 

while Jose and Sathar [42] characterized the exponential distribution using extropy derived from 

lower k-records and subsequently constructed a test statistic. These tests, denoted 𝑇9 and 𝑇10 in 

Table 7, are included in our comparative analysis. The authors of these tests provided valuable 

insights regarding their applicability and suitability for testing exponentiality. 

The power analysis involved simulating 10,000 samples with sizes 𝑁 = 10,20, and 50 from 

each alternative distribution listed in Table 6. The power values of 𝑇𝐸𝑋̂2,3 were computed at the 5% 

significance level. Subsequently, the power values for 𝑇𝐸𝑋̂2,3  and 11 competing tests were 

evaluated for the same sample sizes and distributions. The results are summarized in Table 8. 

Table 8. Power comparisons of the tests at the significance level 𝛼 = 0.05. 

N 𝐻1 𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6 𝐷7 𝐷8 𝐷9 𝐷10 𝐷11 𝑇𝐸𝑋̂2,3 

10 

G(1, 1) 5 5 5 5 5 5 5 5 5 5 5 5 

G(0.4, 1) 60 83 34 11 50 46 29 7 0 50 65 57 

W (1.4, 1) 15 17 15 17 16 13 16 23 29 16 1 13 

HN (1) 18 8 11 10 10 8 10 8 20 10 1 17 

U (0, 1) 93 100 42 28 31 15 33 60 51 24 2 100 

LN (0, 0.8) 5 5 12 24 16 21 23 17 26 19 2 4 

LN (0, 1.4) 3 2 36 19 40 6 29 15 1 9 47 5 

20 

G(1, 1) 5 5 5 5 5 5 5 5 5 5 6 5 

G(0.4, 1) 95 99 56 31 77 80 66 25 0 82 89 89 

W (1.4, 1) 29 8 32 27 34 27 17 33 47 29 6 22 

HN (1) 37 5 23 14 19 12 7 30 23 14 2 35 

U (0, 1) 100 100 86 52 63 28 54 92 80 39 18 100 

LN (0, 0.8) 4 4 18 52 26 48 42 18 49 45 8 2 

LN (0, 1.4) 0 3 61 45 67 11 64 43 0 16 71 0 

50 

G(1, 1) 5 5 5 5 5 5 5 5 5 5 5 5 

G(0.4, 1) 100 100 89 78 99 99 95 68 0 99 100 100 

W (1.4, 1) 56 7 73 55 79 65 5 62 80 67 37 51 

HN (1) 73 2 59 23 52 25 1 54 48 28 13 81 

U (0, 1) 100 100 100 91 98 62 62 100 99 72 78 100 

LN (0, 0.8) 3 3 26 93 44 93 55 24 84 92 47 6 

LN (0, 1.4) 0 2 93 85 95 25 93 85 0 29 95 0 

  



6063 

AIMS Mathematics  Volume 10, Issue 3, 6040–6068. 

5.3.1. Analysis of the results 

For 𝑁 = 10 , the 𝑇𝐸𝑋̂2,3  test shows the expected low power against the exponential 

distribution (Table 8). However, it excels in distinguishing Gamma distributions from exponential 

distributions, achieving high power as the Gamma shape parameter decreases. Against Weibull 

distributions, 𝑇𝐸𝑋̂2,3’s power is competitive, ranking among the top 4 of the 11 tests. While it is not 

the best performer against the half-normal and log-normal distributions, 𝑇𝐸𝑋̂2,3  demonstrates 

exceptional power against the uniform distribution, outperforming all its competitors. 

For 𝑁 = 20, 𝑇𝐸𝑋̂2,3  demonstrates the highest power across all tests for the Gamma and 

uniform distributions. Although its performance against the Weibull, half-normal, and log-normal 

distributions is competitive, it stands out in identifying deviations from the exponential distribution.  

Finally, for 𝑁 = 50, a larger sample size, 𝑇𝐸𝑋̂2,3 demonstrates the highest power (shared 

with some competitors) against the Gamma, half-normal, and uniform distributions. Although its 

performance against the Weibull and log-normal distributions is not the best, these results affirm 

𝑇𝐸𝑋̂2,3’s competitive performance across larger sample sizes. 

5.3.2. A real data example 

To demonstrate the practical application of our proposed test, we present an analysis of a real-

world dataset. Specifically, we examine data on the time, in hours of operation, between successive 

failures of air-conditioning equipment in 13 aircraft to study their aging properties, as reported by 

Proschan [54]. The data are as follows: 90, 10, 60, 186, 61, 49, 14, 24, 56, 20, 79, 84, 44, 59, 29, 118, 

25, 156, 310, 76, 26, 44, 23, 62, 130, 208, 70, 101, and 208. 

The proposed test statistic 𝑇𝐸𝑋̂2,3  was used to assess exponentiality. Table 9 presents the 

calculated test statistic values and corresponding p-values for each dataset. 

Table 9. Results of the exponentiality tests for electrical appliances’ failure data. 

Test KS AD CVM 𝑻𝑬𝑿̂𝟐,𝟑 

P-value 0. 5846 0. 4727 0. 4913 0. 1664 

The window size, m, was determined using the formula 𝑚 = [0.4𝑁]. For comparison, Table 9 

also includes p-values obtained from the Kolmogorov–Smirnov (KS), Anderson-Darling (AD), and 

Cramer-von Mises (CVM) tests for exponentiality. Consequently, the test fails to reject the null 

hypothesis, indicating that the failure times are consistent with an exponential distribution at a 

significance level of α = 0.05. Lawless [55] confirmed this conclusion by applying three additional 

test statistics to the same failure dataset, yielding identical results. 

6. Conclusions 

This study explores the extropy of consecutive r-out-of-n:G systems, providing a 

comprehensive framework for both theoretical analysis and practical applications. Exact expressions 

for systems’ lifetime extropy were derived and evaluated across various lifetime distributions. The 

theoretical contributions include new bounds, characterization results, and insights into the 

variability of extropy, enhancing its applicability in reliability analyses. To address the 
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computational challenges associated with extropy in systems with large component sizes or complex 

distributions, practical bounds were introduced to facilitate estimation. These bounds were validated 

through numerical examples, demonstrating their effectiveness. Additionally, a nonparametric 

extropy estimator was developed and applied to image processing, highlighting its practical 

significance. 

A key contribution of this study is the development of a novel test statistic for exponentiality, 

with numerically computed critical values and an extensive performance assessment against 

alternative distributions. The results indicate that the test is particularly effective in distinguishing 

the exponential from the Gamma and uniform distributions, though its sensitivity varies in the cases 

of Weibull and half-normal distribution. The test’s power was benchmarked against 11 competing 

goodness-of-fit tests, demonstrating strong and consistent performance across different sample sizes. 

A heuristic formula was also introduced to optimize the selection of window size, ensuring robust 

test implementation. 

In summary, this research bridges the gap between theoretical stochastic order analysis and real-

world statistical inference. It provides valuable tools for reliability modeling, particularly in 

consecutive system analysis, goodness-of-fit testing, and nonparametric estimation. The findings 

emphasize the utility of extropy as a computationally efficient and informative measure in both 

reliability engineering and broader statistical applications. 
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