Two classical dynamical systems, the pendulum problem and the Hénon Heiles system, are transformed into the reformulated systems by the nonlinear transformation. These new reformulated systems are transformed into ordinary differential equations on manifolds by the linear transformation. The explicit RKMK method, which is a kind of Lie group method, is applied to solve the differential equations on manifolds. The explicit energy conserving schemes of the two classical dynamical systems are obtained. Numerical simulation investigates the effectiveness of these new schemes in preserving the conservation property of these equations and well simulating dynamical behaviors.
Citation: Jianqiang Sun, Jie Chen, Lijuan Zhang. Explicit energy conserving method of two classical dynamical systems[J]. AIMS Mathematics, 2025, 10(12): 30683-30695. doi: 10.3934/math.20251346
Two classical dynamical systems, the pendulum problem and the Hénon Heiles system, are transformed into the reformulated systems by the nonlinear transformation. These new reformulated systems are transformed into ordinary differential equations on manifolds by the linear transformation. The explicit RKMK method, which is a kind of Lie group method, is applied to solve the differential equations on manifolds. The explicit energy conserving schemes of the two classical dynamical systems are obtained. Numerical simulation investigates the effectiveness of these new schemes in preserving the conservation property of these equations and well simulating dynamical behaviors.
| [1] | K. Feng, M. Z. Qin, Symplectic geometric algorithms for Hamiltonian system, Berlin, Heidelber: Springer, 2010. |
| [2] |
R. I. Mclachlan, G. R. W. Quispel, Discrete gradient methods have an energy conservation law, Discrete Cont. Dyn. Syst., 34 (2014), 1099–1104. http://doi.org/10.3934/dcds.2014.34.1099 doi: 10.3934/dcds.2014.34.1099
|
| [3] |
G. R. W. Quispel, D. I. Mclaren, A new class of energy-preserving numerical integration methods, J. Phys. A Math. Theor., 41 (2008), 045206. http://doi.org/10.1088/1751-8113/41/4/045206 doi: 10.1088/1751-8113/41/4/045206
|
| [4] | E. Hairer, Energy-preserving variant of collocation methods, J. Numer. Anal. Ind. Appl. Math., 5 (2010), 1–12. |
| [5] |
X. F. Yang, Linear first and second-order unconditionally energy stable numerical schemes for the phase field model of homopolymer blends, J. Comput. Phys., 327 (2016), 294–316. http://doi.org/10.1016/j.jcp.2016.09.029 doi: 10.1016/j.jcp.2016.09.029
|
| [6] |
X. F. Yang, J. Zhao, Q. Wang, J. Shen, Numerical approximations for a three-component Cahn-Hilliard phase-field model based on the invariant energy quadratization method, Math. Models Methods Appl. Sci., 27 (2017), 1993–2030. http://doi.org/10.1142/S0218202517500373 doi: 10.1142/S0218202517500373
|
| [7] |
X. F. Yang, J. Zhao, Q. Wang, Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method, J. Comput. Phys., 333 (2017), 104–127. http://doi.org/10.1016/j.jcp.2016.12.025 doi: 10.1016/j.jcp.2016.12.025
|
| [8] |
J. Shen, J. Xu, J. Yang, The scalar auxiliary variable(SAV) approach for gradient flows, J. Comput. Phys., 353 (2018), 407–416. http://doi.org/10.1016/j.jcp.2017.10.021 doi: 10.1016/j.jcp.2017.10.021
|
| [9] |
X. X. Li, J. M. Wen, D. F. Li, Mass and energy-conserving difference schemes for nonlinear fractional Schrödinger equations, Appl. Math. Lett., 111 (2021), 106686. http://doi.org/10.1016/j.aml.2020.106686 doi: 10.1016/j.aml.2020.106686
|
| [10] |
Z. Z. Xu, W. J. Cai, Y. Z. Song, Y. S. Wang, Explicit high-order energy-preserving exponential time differencing method for nonlinear Hamiltonian, Appl. Math. Comput., 404 (2021), 126208. http://doi.org/10.1016/j.amc.2021.126208 doi: 10.1016/j.amc.2021.126208
|
| [11] | C. L. Jiang, Y. S. Wang, Y. Z. Gong, Explicit high order energy preserving method for general Hamilton partial differential equations, J. Comput. Appl. Math., 338 (2021), 113298. |
| [12] |
P. E. Crouch, R. Grossman, Numerical integration of ordinary differential equations on manifolds, J. Nonlinear Sci., 3 (1993), 1–33. http://doi.org/10.1007/BF02429858 doi: 10.1007/BF02429858
|
| [13] |
H. Munthe-kaas, High order Runge-Kutta methods on manifolds, Appl. Numer. Math., 29 (1999), 115–227. http://doi.org/10.1016/S0168-9274(98)00030-0 doi: 10.1016/S0168-9274(98)00030-0
|
| [14] |
A. Marthinsen, H. Munthe-kaas, O. Brynjulf, Simulation of ordinary differential equations on manifolds: Some numerical experiments and verifications, Model., Identif. Control, 18 (1997), 75–88. http://doi.org/10.4173/mic.1997.1.4 doi: 10.4173/mic.1997.1.4
|
| [15] |
C. J. Budd, A. Iserles, Geometric integration: Numerical solution of differential equations on manifolds, Philos. Trans. R. Soc., A, 357 (1999), 945–956. http://doi.org/10.1098/rsta.1999.0360 doi: 10.1098/rsta.1999.0360
|
| [16] | A. Iserles, Numerical methods on (and off) manifolds, In: Foundations of Computational Mathematics, New York: Springer, 1997,180–189. |
| [17] | E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration, Berlin, Heidelberg: Springer, 2002. http://doi.org/10.1007/978-3-662-05018-7 |
| [18] |
H. Munthe-kaas, Runge-Kutta Methods on Lie Groups, BIT Numer. Math., 38 (1996), 92–111. http://doi.org/10.1017/S0010417500020132 doi: 10.1017/S0010417500020132
|
| [19] |
M. P. Calvo, A. Iserles, A. Zanna, Runge-Kutta methods for orthogonal and isospectral flows, Appl. Numer. Math., 22 (1996), 153–163. http://doi.org/10.1016/S0168-9274(96)00029-3 doi: 10.1016/S0168-9274(96)00029-3
|
| [20] |
A. Iserles, H. Z. Munthe-kaas, S.P. N$\phi$rsett, A. Zanna, Lie Group Methods, Acta Numer., 9 (2000), 215–365. http://doi.org/10.1017/S0962492900002154 doi: 10.1017/S0962492900002154
|
| [21] |
J. Q. Sun, Z. Q Ma, M. Z. Qin, RKMK method of solving non-damping LL equation and ferromagnet chain equation, Appl. Math. Comput., 157 (2004), 407–424. http://doi.org/10.1016/j.amc.2003.08.042 doi: 10.1016/j.amc.2003.08.042
|
| [22] | J. B. Chen, H. Munthe-kaas, M. Z. Qin, Square-conservation scheme for a class of evolution equations using Lie-group methods, SIAM J. Numer. Anal., 39 (2002), 216–228. |
| [23] |
M. P. Calvo, A. Iserles, A. Zanna, Conservative methods for the Toda lattice equations, IMA J. Numer. Anal., 19 (1999), 509–523. http://doi.org/10.1093/imanum/19.4.509 doi: 10.1093/imanum/19.4.509
|
| [24] |
J. A. G. Roberts, C. J. Thompson, Dynamics of the Classical Heisenberg Spin Chain, J. Phys. A Gen. Phys., 21 (1998), 1769. http://doi.org/10.1088/0305-4470/21/8/013 doi: 10.1088/0305-4470/21/8/013
|
| [25] | V. S. Varadarajan, Lie Groups, Lie Algebras and Their Representations, Berlin: Springer-Verlag, 1984. |
| [26] | F. Iavernaro, D. Trigiante, High order symmetric schemes for the energy conservation of polynomial Hamiltonian problems, J. Numer. Analy., Ind. Appl. Math., 4 (2009), 87–101. |
| [27] |
H. Zhang, X. Qian, J. Y. Yan, S. H. Song, Highly efficient invariant conserving explicit Runge Kutta schemes for nonlinear Hamiltonian differential equations, J. Comput. Phys., 418 (2020), 109598. http://doi.org/10.1016/j.jcp.2020.109598 doi: 10.1016/j.jcp.2020.109598
|