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Abstract: Two classical dynamical systems, the pendulum problem and the Hénon Heiles system, are
transformed into the reformulated systems by the nonlinear transformation. These new reformulated
systems are transformed into ordinary differential equations on manifolds by the linear transformation.
The explicit RKMK method, which is a kind of Lie group method, is applied to solve the differential
equations on manifolds. The explicit energy conserving schemes of the two classical dynamical
systems are obtained. Numerical simulation investigates the effectiveness of these new schemes in
preserving the conservation property of these equations and well simulating dynamical behaviors.
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1. Introduction

Dynamical systems have wide applications in vibration problems, fluid dynamics, biological
mathematics, etc. Many classical dynamical systems can be written as Hamiltonian systems. The
Hamiltonian system has energy conserving property. But the Hamiltonian system has no exact
solution in general. Numerical simulation has the important meaning in studying these dynamical
systems. Feng et al proposed the symplectic method of the Hamiltonian system [1], which can well
simulate the Hamiltonian system for a long time. The symplectic method has been widely applied to
different dynamical systems and energy conservation partial differential equations and gained great
success. In general, the symplectic method can only approximately preserve the energy conserving
property of the Hamiltonian system. Recently, many energy conserving methods for the Hamiltonian
dynamical system have also been put forward. McLachlan et al. [2] proposed the discrete gradient
method, Quispel et al. [3] proposed the average vector field method, Hairer et al. [4] proposed the
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energy conserving collocation method . These energy conserving methods are usually implicit based
on the original Hamiltonian dynamical system.

Yang et al proposed the scalar auxiliary variable (SAV) approach for the original Hamiltonian
dynamical system by adding new auxiliary variable. The original Hamiltonian dynamical system can
be written as the reformulated system by the SAV approach [5, 6]. The reformulated system has the
quadratic invariant energy function, which is the same energy as the original Hamiltonian dynamical
system [7, 8]. Li et al. [9] transformed the fractional nonlinear Schrödinger (NLS) equations into the
reformulated system based on the SAV approach and proposed the implicit energy conserving scheme
for the fractional NLS equations. Explicit energy conserving schemes for the reformulated system of
the Hamiltonian system have also been proposed by the project method [10, 11].

The reformulated system has quadratic energy conservation. The quadratic energy of the
reformulated system is on a manifold. Therefore, the implicit middle scheme can preserve quadratic
energy conservation. By the project method, the explicit energy conservation scheme can also be
obtained. But the project method needs to change the real value of the numerical solution at every
computation step. We find that the reformulated system can be written as the following form by the
linear transformation

Y(t)
′

= A(Y(t))Y(t), (1.1)

where Y(t0) = Y0. The solution of Eq (1.1) can be on a manifold. And the corresponding quadratic
invariant energy is in fact on the manifold. Many manifold preserving methods were brought up to
compute the ordinary differential equation on manifolds, including Crouch-Grossman methods [12],
Runge-Kutta-Munthe-Kaas (RKMK) method [13, 14], Mangus method [15, 16], the project method
[17]. Here, we will apply the famous RKMK method to solve the reformulations of the two classical
dynamical system: the pendulum problem and the Hénon Heiles equation.

The RKMK method, which was a kind of famous Lie group method, is proposed by Munthe-
Kaas [13, 14, 18], through which the numerical solution of the Lie group differential equations can
be preserved on manifolds exactly. The computation scheme of the RKMK method is very simple
compared to the other Lie group method [19, 20]. And as a kind of exponential integrator, it also has
good stability. The RKMK method has been widely used to solve the differential equation on manifolds
[21, 22]. In this paper, we present a new explicit energy invariant RKMK method for the nonlinear
pendulum problem and the Hénon Heiles system based on the nonlinear transformation similar to the
SAV approach and RKMK method.

The rest of the paper can be organized as follows: In Section 2, the RKMK method, which is the
Lie group method on a manifold, is introduced. And a fourth-order explicit RKMK scheme is
presented. In Section 3, the two reformulated systems of the two classical dynamical system, the
nonlinear pendulum problem and the Hénon Heiles system, are obtained by the nonlinear
transformation similar to the SAV approach. The reformulated systems are changed into the ordinary
differential equations on manifolds by the linear transformation. The two reformulated systems are
solved by the RKMK method. Therefore, the new explicit energy conserving formulas for the two
classical dynamical system are proposed. In the last section, numerical simulations investigate the
effectiveness of these two new schemes for the two classical dynamical system in preserving property
of these equations. Evolution of these dynamical system has also been simulated.
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2. The RKMK method on a manifold

The ordinary differential equation on a manifold, which is a n dimensional vector space, can be
written as

Y
′

= A(Y)Y, Y(t0) = Y0 ∈ Rn, (2.1)

A : H → h is a smooth function, Y ∈ H, H and h are a matrix Lie group and the corresponding Lie
algebra. A(Y) is a skew symmetric matrix. It is obvious that the exact solution of Eq (2.1) can be on a
manifold

M = {Y(t) | Y(t)T Y(t) = C}, (2.2)

where C is a constant number.
Calvo, Iserles and Zanna have pointed out that the Lie group is a nonlinear manifold, linear

combinations of group elements cannot remain in the group [23]. Therefore, the numerical solution of
Eq (2.1) can not stay on the manifold by the classical explicit numerical method, such as the familiar
fourth-order Runge-Kutta formula with these coefficients [20].

0
1
2
0 1

2
0 0 1
1
6

1
3

1
3

1
6 ,

cannot guarantee the numerical solution of Eq (2.1) on a manifold exactly.
A classical result was originally given by Felix Hausdorff (1906) that the exact value of Eq (2.1) is

expressed as
Y(t) = expθ(t) Y0, (2.3)

exp : g → G is the exponential transformation based on Lie algebra g to Lie group G. θ(t) : R → g
means Lie algebra. The solution of Eq (2.1) on a manifold has the Lie group character. Eq (2.1) can
also be called Lie group equation. And the matrix function θ(t) satisfies the Lie algebra differential
equation

θ
′

= dexp−1
θ A(Y) =

∞∑
j=0

g jad j(A(Y), θ), θ(t0) = O, (2.4)

where

dexp−1
θ (A(Y)) = A(Y) −

1
2

[θ, A(Y)] +
1

12
[θ, [θ, A(Y)]] + · · · =

∞∑
j=0

B j

j!
ad j(A(Y), θ).

The coefficients g0, g1, · · · are

g0 = 1, g1 = B1 + 1, g j =
B j

j!
, j ≥ 2, (2.5)

B j
∞

j=0 is the Bernoulli numbers [23–25]. The iterated commutator ad j for the matrices W1 and W2 is
defined as

ad j(W1,W2) = [ad j−1(W1,W2),W2], j = 1, 2, · · · ,∞. (2.6)
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And [., .] is the Lie bracket defined by

[W1,W2] = W1W2 −W2W1, (2.7)

ad0(W1,W2) = W1. When j is taken as the finite number k, the approximation equation of the Lie
algebra differential equation

θ
′

=

k∑
j=0

g jad j(A(Y(t)), θ), θ(t0) = O, (2.8)

is obtained. The Lie algebra θ(t) is a matrix vector space. Munthe-Kaas proposed to solve the
approximation matrix Lie algebra differential equation (2.8) by the classical Runge-Kutta method.
The computation result approximation Lie algebra equation (2.8) is obtained. Thus, the computation
result of Eq (2.1) is also obtained by Eq (2.3). The exponential function is a smooth function, can
ensure the correct order of the computation solution. And the computation result of Equation (2.1)
can be preserved on a manifold exactly. The method is named for the RKMK method [13, 14].
According to the exponential mapping of the solution of Eq (2.1), a explicit fourth-order RKMK
formula can be taken as follows [21]:

We integrate from Yn = Y(tn) to Yn+1 = Y(tn+1)

V1 = O, K1 = A(Yn),

V2 =
1
2

hK1,

K2 = A(eV2Yn) −
1
2

[V2, A(eV2Yn)] +
1

12
[V2, [V2, A(eV2Yn)]],

V3 =
1
2

hK2,

K3 = A(eV3Yn) −
1
2

[V3, A(eV3Yn)] +
1

12
[V3, [V3, A(eV3Yn)]],

V4 = hK3,

K4 = A(eV4Yn) −
1
2

[V4, A(eV4Yn)] +
1

12
[V4, [V4, A(eV4Yn)]],

∆ = h(b1K1 + b2K2 + b3K3 + b4K4),
Yn+1 = e∆Yn. (2.9)

3. The reformulations of two classical dynamical systems

3.1. The reformulations of the nonlinear pendulum equation

The nonlinear pendulum always swings regularly around a central value within a certain range.
The nonlinear pendulum problem can also be used to illustrate various mechanical phenomena, which
is a classical dynamical system. And the motion of this pendulum can be described by the pendulum
equation. Here, we consider the following nonlinear pendulum equation [26] ṗ = − sin q,

q̇ = p,
(3.1)
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Equation (3.1) can be written as a Hamiltonian system

dz
dt

= J∇H(z), (3.2)

where z = (p, q)T ,

J =

(
0 −1
1 0

)
,

with the Hamiltonian function of the nonlinear pendulum equation

H(z) =
1
2

p2 + 1 − cos q. (3.3)

By introducing the variable r =
√

1 − cos q + c0, where c0 > 0 is a constant number, the SAV
reformulation of Eq (3.1) reads  ṗ = −2R(q)r,

ṙ = Rp,
(3.4)

and
q̇ = p, (3.5)

where R = ∂r
∂q =

sin q

2
√

1−cos q
.

Equation (3.4) can be written as
dx
dt

= D(q)∇xH, (3.6)

where x = (p, r)T , the corresponding Hamiltonian function is H(x) = 1
2 p2 + r2,and

D(q) =

(
0 −R
R 0

)
.

Equation (3.6) is equivalent to
dx
dt

= D(q)Qx, (3.7)

where

Q =

(
1 0
0 2

)
.

Let Q = BT B,Y = Bx,

B =

(
1 0
0
√

2

)
,

we can obtain the ordinary differential equations

dY
dt

= A(q)Y = A(Y)Y, (3.8)

where A(q) = BD(q)BT,
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A(q) =

(
0 −

√
2R

√
2R 0

)
.

The solution of Eq (3.8) can be on the manifold

M = { Y(t) | Y(t)T Y(t) =
1
2

p2 + r2 = C}, (3.9)

where C is a constant. The fourth-order RKMK method (2.9) is applied to solve Eq (3.8). At the same
time, Eq (3.6) can be discretized into

qn+1 = qn + h(pn+1 + pn)/2. (3.10)

Therefore, the new energy conservation scheme of the nonlinear pendulum problem is obtained.

3.2. The reformulations of the Hénon-Heiles system

The Hénon Heiles system describes the motion of particles being confined to a plane, and the
potential fields of three body galaxies that limit the motion of particles are symmetrical. The motion
of a moving particle in a potential field can be expressed as [27]

ṗ1 = −q1 − 2q1q2,

ṗ2 = −q2 − q2
1 + q2

2,

q̇1 = p1,

q̇2 = p2.

(3.11)

Equation (3.11) can be written as the Hamiltonian system

dz
dt

= J∇H(z), (3.12)

where z = (p1, p2, q1, q2)T ,

J =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 ,
with the Hamiltonian function

H(p1, p2, q1, q2) =
1
2

(p2
1 + p2

2 + q2
1 + q2

2) + q2
1q2 −

1
3

q3
2. (3.13)

In the Hénon Heiles system, by introducing a new variable r =

√
q2

1q2 −
1
3q3

2 + c0, (c0 >
2
3 ), where

the constant c0 can ensure the Hamiltonian energy function is positive, we can get an equivalent
reformulation 

ṗ1 = −q1 − 2rR1,

ṗ2 = −q2 − 2rR2,

q̇1 = p1,

q̇2 = p2,

ṙ = R1 p1 + R2 p2,

(3.14)
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where

R1 =
∂r
∂q1

=
q1q2√

q2
1q2 −

1
3q3

2 + c0

, R2 =
∂r
∂q2

=
q2

1 − q2
2

2
√

q2
1q2 −

1
3q3

2 + c0

. (3.15)

The reformulated Hénon Heiles system (3.14) can be written as

dz
dt

= D(q1, q2)∇zH, (3.16)

where z = (p1, p2, q1, q2, r)T , and

D(q1, q2) =


0 0 −1 0 −R1

0 0 0 −1 −R2

1 0 0 0 0
0 1 0 0 0
R1 R2 0 0 0


.

The corresponding Hamiltonian energy function is H(z) = 1
2 (p2

1 + p2
2 + q2

1 + q2
2) + r2.

Equation (3.16) is equivalent to
dz
dt

= D(q1, q2)Qz (3.17)

where

Q =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 2


.

Let

B =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0

√
2


,

then Q = BTB,Y = Bz. We can obtain ordinary differential equations

dY
dt

= A(q1, q2)Y = A(Y)Y, (3.18)

where

A(q1, q2) = BD(q1, q2)BT =


0 0 −1 0 −

√
2R1

0 0 0 −1 −
√

2R2

1 0 0 0 0
0 1 0 0 0
√

2R1
√

2R2 0 0 0


,
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is a skew symmetric matrix. The solution of Eq (3.18) can be on the manifold

M = { Y(t) | Y(t)T Y(t) =
1
2

(p2
1 + p2

2 + q2
1 + q2

2) + r2 = C}, (3.19)

where C is a constant. The fourth-order RKMK method (2.9) is applied to solve Eq (3.18). A new
explicit energy-conserving scheme of the Hénon Heiles system is obtained.

4. Simulation of two classical dynamical systems

In the numerical computation part, the explicit fourth-order RKMK formula (2.9) is presented
to solve the discrete reformulated system of the nonlinear pendulum problem and the Hénon Heiles
system. And θ(t) is the matrix function. The exponential function expθ(t) is adopted with expm(θ(t)) in
the Matlab software. The discrete energy error is defined as follows:

RE(t) = |H(zn) − H(z0)|. (4.1)

In order to compare the energy error, the corresponding fourth order explicit Runge-Kutta (RK)
method [20] is utilized to solve the original two Eqs (11) and (21).

4.1. Simulation of the pendulum problem

The initial condition of the pendulum problem (3.1) can be taken as p = 1, q = 0, and c0 = 1.
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Figure 1. Evolution of solution obtained by RKMK method with 4t = 0.001, t ∈ [0, 16].
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Figure 2. Energy error of Eqs (11) at t ∈ [0, 16] by (a): RKMK method and (b): RK method.

Figure 1 shows the evolution of the solution p(t) and q(t) at t ∈ [0, 16]. From Figure 1, we can
know that the trajectory of the pendulum problem can always swing around the equilibrium position,
which reflects the motion of the pendulum. Figure 2(a) shows the discrete energy error of the pendulum
problem by the RKMK method. The error is up to 10−14, which can be neglected. Figure 2(b) shows
the discrete energy error of the pendulum problem by the RK method. The classical RK method can
not preserve the energy invariant of the system exactly. From Figures 1 and 2, we can obtain that the
new explicit energy invariant RKMK scheme of the pendulum problem can well simulate the evolution
of the solution and preserve the discrete energy conservation of the equation.

4.2. Simulation of the Hénon-Heiles system

As the second example, we choose the initial condition p1 = 0, p2 = 0, q1 = 0.1, q2 = −0.5 at a
point local on the boundary of the critical triangular region and c0 = 1.
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Figure 3. Evolution of solution obtained by RKMK method with 4t = 0.05, t ∈ [0, 1000].
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Figure 4. Energy error of Eq (21) at t ∈ [0, 1000] by (a): RKMK method and (b): RK
method.

Figure 3 shows the evolution of the solution of the Hénon Heiles system at t ∈ [0, 1000] with small
temporal step size 4t = 0.05. The numerical result is consistent with the result in [27]. Figure 4(a)
shows the discrete energy error of the Hénon Heiles system at t ∈ [0, 1000]. The error is up to 10−14,
which can be neglected. Figure 4(b) shows the discrete energy error of the Hénon Heiles system at
t ∈ [0, 1000] by the RK method. The classical RK method can’t preserve the energy invariant of the
system. From Figures 3 and 4, we can obtain that the high order explicit energy invariant RKMK
scheme of the Hénon-Heiles system can well simulate the evolution of the solution and preserve the
discrete energy conservation of the equation.

Then, we choose the initial condition p1 = 0, p2 = 0, q1 = 0.2, q2 = −0.3 at a point local on the
boundary of the critical triangular region and c0 = 1.
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Figure 5. Evolution of solution obtained by RKMK method with 4t = 0.05, t ∈ [0, 1000].

Figure 5 shows the evolution of the solution of the Hénon Heiles system at t ∈ [0, 1000] with small
temporal step size 4t = 0.05. Figure 6(a) show the discrete energy error of the Hénon Heiles system at
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t ∈ [0, 1000]. The error is up to 10−14,which can be neglected. Figure 6(b) shows the discrete energy
error of the Hénon Heiles system at t ∈ [0, 1000] by the RK method. The classical RK method can’t
preserve the energy invariant of the system. From Figures 5 and 6, we can obtain the high order explicit
energy invariant RKMK scheme of the Hénon Heiles system can also well simulate the evolution of
the solution and preserve the discrete energy conservation of the equation.
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Figure 6. Energy error of Eq (21) at t ∈ [0, 1000] by (a): RKMK method and (b): RK
method.

5. Conclusions

In conclusion, we put forward energy invariant explicit RKMK formula to solve the pendulum
problem and the Hénon Heiles system. Numerical results indicate that the new explicit formulas can
well simulate the evolution of the solution of these systems and preserve the discrete energy invariant
of these systems. Compared to the explicit scheme of the reformulated system of energy conservation
differential equations based on the project method, the new method is rather simple and does not
need to change the real value of the numerical solution at every computation step. Compared to the
classical explicit RK method, the new method can preserve the energy of the Hamiltonian system
exactly. Obviously, the new energy invariant explicit RKMK method can also be adopted to solve
other energy conservation Hamiltonian dynamical systems, which have the same property as the two
classical dynamical systems. But the new method can not solve the general Hamiltonian systems. In
the future, we will study the high order explicit energy preserving method for the general Hamiltonian
systems.
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