Research article

Fixed point theorems for graphic $ \Theta $-contractions in $ \mathcal{F} $-metric spaces with applications to image processing

  • Published: 26 December 2025
  • MSC : 46S40, 47H10, 54H25

  • The aim of this research article is to introduce the notion of graphic $ \Theta $-contractions in the setting of $ \mathcal{F} $-metric spaces, and establish some novel fixed point results. To demonstrate the validity of our theoretical contributions, we include some illustrative examples. In addition, we extend our analysis by proving fixed point theorems for orbitally $ G $ continuous graphic $ \Theta $-contractions. A significant application of our results is the formulation of image denoising as a fixed point problem. Specifically, we define a contractive operator that refines pixel intensities through iterative updates based on the local neighborhood of each pixel. Using the principles of fixed point theory, we prove the existence and uniqueness of a stable denoised image that corresponds to the fixed point of the constructed mapping. Furthermore, we investigate the convergence properties of the iterative scheme under the assumptions of graphic $ \Theta $-contractions, thereby confirming its reliability and effectiveness.

    Citation: Maliha Rashid, Haseeba Bibi, Hadeel Z. Alzumi. Fixed point theorems for graphic $ \Theta $-contractions in $ \mathcal{F} $-metric spaces with applications to image processing[J]. AIMS Mathematics, 2025, 10(12): 30639-30660. doi: 10.3934/math.20251344

    Related Papers:

  • The aim of this research article is to introduce the notion of graphic $ \Theta $-contractions in the setting of $ \mathcal{F} $-metric spaces, and establish some novel fixed point results. To demonstrate the validity of our theoretical contributions, we include some illustrative examples. In addition, we extend our analysis by proving fixed point theorems for orbitally $ G $ continuous graphic $ \Theta $-contractions. A significant application of our results is the formulation of image denoising as a fixed point problem. Specifically, we define a contractive operator that refines pixel intensities through iterative updates based on the local neighborhood of each pixel. Using the principles of fixed point theory, we prove the existence and uniqueness of a stable denoised image that corresponds to the fixed point of the constructed mapping. Furthermore, we investigate the convergence properties of the iterative scheme under the assumptions of graphic $ \Theta $-contractions, thereby confirming its reliability and effectiveness.



    加载中


    [1] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fundam. Math., 3 (1922), 133–181. https://doi.org/10.1007/BF03018603 doi: 10.1007/BF03018603
    [2] S. B. Jr. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475–488
    [3] M. Kikkawa, T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal., 69 (2008), 2942–2949. https://doi.org/10.1016/j.na.2007.08.064 doi: 10.1016/j.na.2007.08.064
    [4] D. Wardowski, Fixed point theory of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94
    [5] P. D. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed Point Theory Appl., 22 (2020), 21. https://doi.org/10.1007/s11784-020-0756-1 doi: 10.1007/s11784-020-0756-1
    [6] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359–1373. https://doi.org/10.1090/S0002-9939-07-09110-1 doi: 10.1090/S0002-9939-07-09110-1
    [7] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 38. https://doi.org/10.1186/1029-242X-2014-38 doi: 10.1186/1029-242X-2014-38
    [8] J. Ahmad, A. E. Al-Mazrooei, Y. J. Cho, Y. O. Yang, Fixed point results for generalized $\Theta $-contractions, J. Nonlinear Sci. Appl., 10 (2017), 2350–2358. https://doi.org/10.22436/jnsa.010.05.0 doi: 10.22436/jnsa.010.05.0
    [9] W. Onsod, T. Saleewong, J. Ahmad, A. E. Al-Mazrooei, P. Kumam, Fixed points of a $\Theta $-contraction on metric spaces with a graph, Commun. Nonlinear Anal., 2 (2016), 139–149.
    [10] F. Vetro, A generalization of Nadler fixed point theorem, Carpathian J. Math., 31 (2015), 403–410. https://doi.org/10.37193/CJM.2015.03.18 doi: 10.37193/CJM.2015.03.18
    [11] I. A. Bakhtin, The contraction mapping principle in almost metric space, Funct. Anal. Ulianowsk. Gos. Ped. Ins., 30 (1989), 26–37.
    [12] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Univ. Osstrav., 1 (1993), 5–11.
    [13] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen., 57 (2000), 31–37. ttps://doi.org/10.5486/PMD.2000.2133 doi: 10.5486/PMD.2000.2133
    [14] F. Khojasteh, E. Karapınar, S. Radenović, $\theta $ -metric space: A generalization, Math. Probl. Eng., 2013 (2013), 504609. https://doi.org/10.1155/2013/504609 doi: 10.1155/2013/504609
    [15] R. Fagin, R. Kumar, D. Sivakumar, Comparing top $k$ lists, SIAM J. Discret. Math., 17 (2003), 134–160. https://doi.org/10.1137/S0895480102412856 doi: 10.1137/S0895480102412856
    [16] M. Jleli, B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 20 (2018), 128. https://doi.org/10.1007/s11784-018-0606-6 doi: 10.1007/s11784-018-0606-6
    [17] S. A. Al-Mezel, J. Ahmad, G. Marino, Fixed point theorems for generalized ($\alpha \beta $-$\psi $)-contractions in $\mathcal{F}$-metric spaces with applications, Mathematics, 8 (2020), 584. https://doi.org/10.3390/math8040584 doi: 10.3390/math8040584
    [18] A. Hussain, T. Kanwal, Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, Trans. A. Razmadze Math. Inst., 172 (2018), 481–490. https://doi.org/10.1016/j.trmi.2018.08.006 doi: 10.1016/j.trmi.2018.08.006
    [19] M. Alansari, S. Mohammed, A. Azam, Fuzzy fixed point results in $\mathcal{F}$-metric spaces with applications, J. Function Spaces, 2020 (2020), 5142815. https://doi.org/10.1155/2020/5142815 doi: 10.1155/2020/5142815
    [20] H. Faraji, S. Radenović, Some fixed point results for $ \mathcal{F}$-$G$-contraction in $\mathcal{F}$-metric spaces endowed with a graph, J. Math. Extens., 16 (2022), 1–13. https://doi.org/10.30495/JME.2022.1513 doi: 10.30495/JME.2022.1513
    [21] T. Kanwal, A. Hussain, H. Baghani, M. De La Sen, New fixed point theorems in orthogonal $\mathcal{F}$-metric spaces with application to fractional differential equation, Symmetry, 12 (2020), 832. https://doi.org/10.3390/sym12050832 doi: 10.3390/sym12050832
    [22] A. Petrusel, I. A. Rus, Fixed point theorems in ordered $L$-spaces, Proc. Amer. Math. Soc., 134 (2006), 411–418. https://doi.org/10.1090/S0002-9939-05-08147-4 doi: 10.1090/S0002-9939-05-08147-4
    [23] S. K. Mohanta, Common fixed points in b-metric spaces endowed with a graph, Mate. Vesnik, 68 (2016), 140–154. https://doi.org/10.2298/MTNV1602140M doi: 10.2298/MTNV1602140M
    [24] A. Hanjing, S. Suantai, A fast image restoration algorithm based on a fixed point and optimization method, Mathematics, 8 (2020), 378. https://doi.org/10.3390/math8030378 doi: 10.3390/math8030378
    [25] K. S. Kim, J. H. Yun, Image restoration using a fixed point method for a TVL2 regularization problem, Algorithms, 13 (2020), 1. https://doi.org/10.3390/a13010001 doi: 10.3390/a13010001
    [26] F. Cabello, J. León, Y. Iano, R. Arthur, Implementation of a fixed-point 2D Gaussian filter for image processing based on FPGA, In: Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 2015 (2025), 28–33. https://doi.org/doi:10.1109/SPA.2015.7365108" target="_blank">10.1109/SPA.2015.7365108">https://doi.org/doi:10.1109/SPA.2015.7365108
    [27] A. Mishra, P. K. Tripathi, A. K. Agrawal, D. R. Joshi, A contraction mapping method in digital image processing, Int. J. Recent Technol. Eng., 8 (2019), 193–196. https://doi.org/10.35940/ijrte.D1046.1284S519 doi: 10.35940/ijrte.D1046.1284S519
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(238) PDF downloads(120) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog