Research article Special Issues

Algebraic invariants of edge ideals from strong products of paths and cycles

  • Published: 16 December 2025
  • MSC : 05C69, 05C70, 13D02, 13E40

  • This paper investigates algebraic invariants of edge ideals associated with families of graphs constructed as the strong product of a path or cycle with the complete graph $ K_m $, namely $ \mathscr{P}_\gamma = P_\gamma \boxtimes K_m $ and $ \mathscr{C}_\gamma = C_\gamma \boxtimes K_m $. For an edge ideal $ I(\mathbb{G}) \subset \Re $ in a polynomial ring over a field $ \mathbb{K} $, we derive explicit combinatorial formulas for key homological and ring-theoretic invariants of the quotient ring $ \Re/I(\mathbb{G}) $. These include Castelnuovo-Mumford regularity, depth, Stanley depth, projective dimension, and Krull dimension. Furthermore, we characterize all Cohen–Macaulay graphs in defined families, providing a complete classification where $ \Re/I(\mathbb{G}) $ is Cohen–Macaulay.

    Citation: Ahtsham Ul Haq, Muhammad Usman Rashid, Muhammad Ishaq. Algebraic invariants of edge ideals from strong products of paths and cycles[J]. AIMS Mathematics, 2025, 10(12): 29650-29663. doi: 10.3934/math.20251303

    Related Papers:

  • This paper investigates algebraic invariants of edge ideals associated with families of graphs constructed as the strong product of a path or cycle with the complete graph $ K_m $, namely $ \mathscr{P}_\gamma = P_\gamma \boxtimes K_m $ and $ \mathscr{C}_\gamma = C_\gamma \boxtimes K_m $. For an edge ideal $ I(\mathbb{G}) \subset \Re $ in a polynomial ring over a field $ \mathbb{K} $, we derive explicit combinatorial formulas for key homological and ring-theoretic invariants of the quotient ring $ \Re/I(\mathbb{G}) $. These include Castelnuovo-Mumford regularity, depth, Stanley depth, projective dimension, and Krull dimension. Furthermore, we characterize all Cohen–Macaulay graphs in defined families, providing a complete classification where $ \Re/I(\mathbb{G}) $ is Cohen–Macaulay.



    加载中


    [1] R. P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math., 68 (1982), 175–193. https://doi.org/10.1007/BF01394054 doi: 10.1007/BF01394054
    [2] A. M. Duval, B. Goeckner, C. J. Klivans, J. L. Martin, A non-partitionable Cohen–Macaulay simplicial complex, Adv. Math., 299 (2016), 381–395. https://doi.org/10.1016/j.aim.2016.05.011 doi: 10.1016/j.aim.2016.05.011
    [3] J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra, 322 (2009), 3151–3169. https://doi.org/10.1016/j.jalgebra.2008.01.006 doi: 10.1016/j.jalgebra.2008.01.006
    [4] A. Alipour, A. Tehranian, Depth and Stanley depth of edge ideals of star graphs, Int. J. Appl. Math. Stat., 56 (2017), 63–69.
    [5] A. Rauf, Depth and Stanley depth of multigraded modules, Commun. Algebra, 38 (2010), 773–784. https://doi.org/10.1080/00927870902829056 doi: 10.1080/00927870902829056
    [6] L. Fouli, S. Morey, A lower bound for depths of powers of edge ideals, J. Algebr. Comb., 42 (2015), 829–848. https://doi.org/10.1007/s10801-015-0604-3 doi: 10.1007/s10801-015-0604-3
    [7] M. Cimpoeas, Several inequalities regarding Stanley depth, Rom. J. Math. Comput. Sci., 2 (2012), 28–40.
    [8] M. Ishaq, Values and bounds for the Stanley depth, Carpathian J. Math., 27 (2011), 217–224.
    [9] S. A. S. Fakhari, On the Stanley depth of powers of edge ideals, J. Algebra, 489 (2017), 463–474. https://doi.org/10.1016/j.jalgebra.2017.07.011 doi: 10.1016/j.jalgebra.2017.07.011
    [10] G. Kalai, R. Meshulam, Intersections of Leray complexes and regularity of monomial ideals, J. Comb. Theory A, 113 (2006), 1586–1592. https://doi.org/10.1016/j.jcta.2006.01.005 doi: 10.1016/j.jcta.2006.01.005
    [11] H. Dao, C. Huneke, J. Schweig, Bounds on the regularity and projective dimension of ideals associated to graphs, J. Algebr. Comb., 38 (2013), 37–55. https://doi.org/10.1007/s10801-012-0391-z doi: 10.1007/s10801-012-0391-z
    [12] M. E. Uribe-Paczka, A. Van Tuyl, The regularity of some families of circulant graphs, Mathematics, 7 (2019), 657. https://doi.org/10.3390/math7070657 doi: 10.3390/math7070657
    [13] R. R. Bouchat, Free resolutions of some edge ideals of simple graphs, J. Commut. Algebra, 2 (2010), 1–35. https://doi.org/10.1216/JCA-2010-2-1-1 doi: 10.1216/JCA-2010-2-1-1
    [14] S. Faridi, B. Hersey, Resolutions of monomial ideals of projective dimension 1, Commun. Algebra, 45 (2017), 5453–5464. https://doi.org/10.1080/00927872.2017.1313422 doi: 10.1080/00927872.2017.1313422
    [15] X. Zheng, Resolutions of facet ideals, Commun. Algebra, 32 (2004), 2301–2324. https://doi.org/10.1081/AGB-120037222
    [16] M. Barile, A. Macchia, A note on Cohen–Macaulay graphs, Comm. Algebra, 44 (2016), 1473–1477. https://doi.org/10.1080/00927872.2015.1027361 doi: 10.1080/00927872.2015.1027361
    [17] R. H. Villarreal, Monomial algebras, 2Eds, Chapman and Hall/CRC, 2015. https://doi.org/10.1201/b18224
    [18] J. Herzog, T. Hibi, X. Zheng, Cohen–Macaulay chordal graphs, J. Comb. Theory A, 113 (2006), 911–916. https://doi.org/10.1016/j.jcta.2005.08.007 doi: 10.1016/j.jcta.2005.08.007
    [19] CoCoATeam, CoCoA: A system for doing computations in commutative algebra, Available from: http://cocoa.dima.unige.it/.
    [20] D. R. Grayson, M. E. Stillman, Macaulay2: A software system for research in algebraic geometry, Available from: https://www.macaulay2.com/.
    [21] R. Hammack, W. Imrich, S. Klavar, Handbook of product graphs, 2Eds, CRC Press, 2011. https://doi.org/10.1201/b10959
    [22] A. Hirano, K. Matsuda, Matching numbers and dimension edge ideals, Graph. Combinator., 37 (2021), 761–774. https://doi.org/10.1007/s00373-021-02277-x doi: 10.1007/s00373-021-02277-x
    [23] A. Vesel, The independence number of strong product of cycles, Comput. Math. Appl., 36 (1998), 9–21. https://doi.org/10.1016/S0898-1221(98)00169-2 doi: 10.1016/S0898-1221(98)00169-2
    [24] H. T. Hà, A. Van Tuyl, Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers, J. Algebr. Comb., 27 (2008), 215–245. https://doi.org/10.1007/s10801-007-0079-y doi: 10.1007/s10801-007-0079-y
    [25] W. Bruns, H. J. Herzog, Cohen–Macaulay rings, 2Eds, Cambridge University Press, 1998. https://doi.org/10.1017/CBO9780511608681
    [26] S. Morey, R. H. Villarreal, Edge ideals: Algebraic and combinatorial properties, In: Progress in commutative algebra 1: Combinatorics and homology, 2012, 85–126. https://doi.org/10.1515/9783110250404.85
    [27] R. Woodroofe, Matchings, coverings, and Castelnuovo-Mumford regularity, J. Commut. Algebra, 6 (2014), 287–304. https://doi.org/10.1216/JCA-2014-6-2-287 doi: 10.1216/JCA-2014-6-2-287
    [28] D. Eisenbud, Commutative algebra: With a view toward algebraic geometry, Springer, 2013.
    [29] Z. Iqbal, M. Ishaq, Depth and Stanley depth of the edge ideals of the powers of paths and cycles, Analele ştiinţifice ale Universităţii "Ovidius" Constanţa. Seria Matematică, 27 (2019), 113–135. https://doi.org/10.2478/auom-2019-0037 doi: 10.2478/auom-2019-0037
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(377) PDF downloads(27) Cited by(0)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog