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and Cγ = Cγ ⊠ Km. For an edge ideal I(G) ⊂ ℜ in a polynomial ring over a field K, we derive explicit
combinatorial formulas for key homological and ring-theoretic invariants of the quotient ringℜ/I(G).
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1. Introduction

Let ℜ = K[c1, . . . , cγ] be a polynomial ring in γ variables over a field K, and G be a simple graph
with vertex set V(G) = {c1, . . . , cγ}. The edge ideal of G, denoted I(G), is the ideal in ℜ generated by
all monomials cic j corresponding to edges {ci, c j} ∈ E(G). In other words, I(G) =

(
cic j : {ci, c j} ∈ E(G)

)
is generated by monomials representing the edges of G.

Let F be a finitely generated Zγ-graded ℜ-module. Let u ∈ F be a homogeneous element and
Z ⊆ {c1, . . . , cγ}. The K-subspace uK[Z] generated by all elements uv with v ∈ K[Z] is called a Stanley
space of dimension |Z| if it is a free K[Z]-module. Here, as usual, |Z| denotes the number of elements
of Z. A decomposition D of F as a finite direct sum of Stanley spaces is called a Stanley decomposition
of F. The minimum dimension of a Stanley space in D is called the Stanley depth of D and is denoted
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by sdepth(D). The quantity

sdepth(F) := max
{
sdepth(D) | D is a Stanley decomposition of F

}
is called the Stanley depth of F [1].

We say that F satisfies Stanley’s inequality if depth(F) ≤ sdepth(F). Stanley’s conjecture proposes
that a fundamental relationship between depth and Stanley depth holds for any module F, namely that
the Stanley depth is always at least the depth [1]. This was refuted in 2016 by Duval et al. [2]. For
monomial ideals I ⊂ J ⊂ ℜ, the Stanley depth sdepth(J/I) is an invariant of a purely combinatorial
nature [3]. Furthermore, it continues to exhibit properties that are analogous to those of classical depth;
see references [4–9].

In combinatorial commutative algebra, invariants derived from minimal free resolutions play a
central role. For a graded module F over a polynomial ringℜ that admits a free resolution, the graded
minimal free resolution is an exact sequence of the form

0 −→
⊕

j∈Z

ℜ(− j)βp, j(F) −→
⊕

j∈Z

ℜ(− j)βγ−1, j(F) −→ · · · −→
⊕

j∈Z

ℜ(− j)β0, j(F) −→ F −→ 0.

The graded Betti numbers βi, j(F) count the number of minimal generators of degree j in the i-th syzygy
module. From these Betti numbers, two fundamental invariants are defined, namely the Castelnuovo–
Mumford regularity

reg(F) = max{ j − i : βi, j(F) , 0},

and the projective dimension

pdim(F) = max{i : βi, j(F) , 0 for some j}.

The Castelnuovo-Mumford regularity reg(F) measures the maximum degree shift required
throughout the minimal free resolution and bounds the degrees of the generators required at each step
of the resolution. In contrast, the projective dimension pdim(F) measures the length of resolution,
indicating the number of syzygy steps required. Together, these invariants provide complementary
measures of the homological complexity of F and have been extensively studied for edge ideals and
other monomial ideals [10–15].

A graphG is said to be Cohen–Macaulay if the quotient ringℜ/I(G) is Cohen–Macaulay over every
field K. The graph is called unmixed if its edge ideal I(G) is unmixed over every field K, a condition
equivalent to all minimal vertex covers ofG having the same cardinality [16]. It is well-established that
every Cohen–Macaulay graph is unmixed [17]. Furthermore, for chordal graphs, the Cohen–Macaulay
property is known to be independent of the choice of field K [18].

In this article, we determine explicit combinatorial formulas for key homological invariants of rings
ℜ/I(Pγ) and ℜ/I(Cγ), where Pγ = Pγ ⊠ Km and Cγ = Cγ ⊠ Km are the strong products of a path
or cycle, respectively, with the complete graph Km. Our results demonstrate a profound connection
between the combinatorial structure of these graph classes and algebraic properties of their associated
edge ideals. We acknowledge the use of CoCoA [19] and Macaulay2 [20].

We conclude this introduction by outlining the structure of the paper. Section 2 reviews essential
preliminary concepts and established results on graph products and monomial ideals. Section 3
presents our study of algebraic invariants, including a characterization of Cohen–Macaulay graphs.
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Our results on Castelnuovo–Mumford regularity are developed in Section 4. Section 5 presents
concluding remarks on the research. Finally, Section 6 discusses open questions and potential
generalizations of our work.

2. Notation and preliminaries

This section gives a brief overview of the graph-theoretic and algebraic concepts that are central
to this work. The strong product of graphs G and H, denoted G ⊠ H, is a graph whose vertex set
is V(G ⊠ H) = V(G) × V(H) and for (c, d), (e, f) ∈ V(G ⊠ H), {(c, d), (e, f)} ∈ E(G ⊠ H), whenever
{c, e} ∈ E(G) and d = f, or {d, f} ∈ E(H) and c = e, or {c, e} ∈ E(G) and {d, f} ∈ E(H) [21].

Define Pγ := Pγ ⊠ Km for γ ≥ 1, and Cγ := Cγ ⊠ Km for γ ≥ 3. Let V(Pγ) = V(Cγ) =
{a1i , . . . , a

m
i | 1 ≤ i ≤ γ} be the vertex set for both families of graphs. In Pγ, the vertices are arranged

in m horizontal layers. In contrast, Cγ arranges them in m concentric layers (see Figure 1). Clearly,
|V(Pγ)| = |V(Cγ)| = mγ.
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a31 a32 a33 a34 a35 a36 a37 a13

a14

a15

a16

a17a18
a19

a110

a111
a112
a11 a12

a23 a33

a24

a34

a25

a35

a26

a36
a27

a37

a28

a38

a29
a39

a210

a310

a211

a311

a212

a312

a21

a31

a22

a32

Figure 1. Vertex labeling of P7 = P7 ⊠ K3 (left) and C12 = C12 ⊠ K3 (right).

An independent set of a graph G is a subset X of the vertex set V(G) such that for any two distinct
vertices u, v ∈ X, the edge {u, v} < E(G). The independence number of G, denoted by α(G), is the
maximum cardinality of an independent set in G. That is,

α(G) = max{|X| : X ⊆ V(G) is an independent set}.

Lemma 2.1 ( [22, Lemma 1]). If J = I(G), then dim(ℜ/I) = α(G).

Lemma 2.2 ( [23, Corollary 3]). For a complete graph Km on m ≥ 1 vertices,

α(G ⊠ Km) = α(G).

A subgraph H of G is an induced subgraph if every edge of G having its endpoints in V(H) is also
an edge of H. Equivalently, H is induced if E(H) consists of all edges of G whose endpoints belong
to V(H). If T ⊆ V(G), the induced subgraph of G with vertex set T is denoted by G[T ]. A matching
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is a set of edges, no two of which share a vertex. An induced matching is a matching M for which
G[V(M)] contains exactly the edges of M. The induced matching number of graph G is the invariant
im(G) given by

im(G) = max{|M| : M ⊆ E(G) is an induced matching}.

Lemma 2.3 ( [24, Corollary 6.9]). Let G be a chordal graph and J = I(G); then reg(ℜ/J) = im(G).

Lemma 2.4. For a short exact sequence 0→ F2 → F1 → F3 → 0 of Zγ-gradedℜ-modules:

depth(F1) ≥ min{depth(F2), depth(F3)} ,

and
sdepth(F1) ≥ min{sdepth(F2), sdepth(F3)}.

The first inequality follows from [25, Proposition 1.2.9] and the second from [5, Lemma 2.2].

Lemma 2.5. Let ℜ̄ = ℜ⊗KK[cγ+1] be a polynomial ring of variables γ+ 1 and I be a monomial ideal
ofℜ. If U = ℜ̄/I and V = ℜ/I, then:

a. depth(U) = depth(V) + 1.
b. sdepth(U) = sdepth(V) + 1.
c. reg(U) = reg(V).

The results for depth and Stanley depth are consequences of [3, Lemma 3.6], with the result for
regularity following from [26, Lemma 3.5].

For 1 ≤ n < γ, if ℜ = K[c1, . . . , cn, cn+1, . . . , cγ] with J1 ⊂ ℜ1 = K[c1, . . . , cn] and J2 ⊂ ℜ2 =

K[cn+1, . . . , cγ] are monomial ideals, thenℜ/(J1 + J2) � ℜ1/J1 ⊗K ℜ2/J2 by [17, Proposition 2.2.20].
Thus, depth(ℜ/(J1+J2)) = depth(ℜ1/J1⊗Kℜ2/J2) and sdepth(ℜ/(J1+J2)) = sdepth(ℜ1/J1⊗Kℜ2/J2).
The following lemma is obtained by applying [17, Proposition 2.2.21] for depth, and [5, Theorem 3.1]
for Stanley’s depth.

Lemma 2.6. Let J1 ⊂ ℜ1 = K[c1, . . . , cn], J2 ⊂ ℜ2 = K[cn+1, . . . , cγ] be monomial ideals and
ℜ = K[c1, . . . , cn, cn+1, . . . , cγ], for 1 ≤ n < γ. Then
depthℜ(ℜ1/J1 ⊗K ℜ2/J2) = depthℜ(ℜ/(J1 + J2)) = depthℜ1

(ℜ1/J1) + depthℜ2
(ℜ2/J2), and

sdepthℜ(ℜ1/J1 ⊗Kℜ2/J2) ≥ sdepthℜ1
(R1/J1) + sdepthℜ2

(ℜ2/J2).

Lemma 2.7. Let I be a monomial ideal ofℜ and c ∈ ℜ such that c < I. If U = ℜ/(I : c) and V = ℜ/I,
then depth(U) ≥ depth(V) and sdepth(U) ≥ sdepth(V).

The first inequality follows from [5, Corollary 1.3] and the second from [7, Proposition 2.7].

Lemma 2.8 ( [27, Lemma 8]). For 1 ≤ n < γ, let ℜ = K[c1, . . . , cn, cn+1, . . . , cγ] with J1 ⊂ ℜ1 =

K[c1, . . . , cn], and J2 ⊂ ℜ2 = K[cn+1, . . . , cγ] be edge ideals, then

reg(ℜ/(J1 + J2)) = reg(ℜ1/J1) + reg(ℜ2/J2).

Lemma 2.9 ( [28, Corollary 20.19]). Let c ∈ ℜ and the monomial ideal I ⊂ ℜ. If reg(ℜ/(I : c)) <
reg(ℜ/(I, c)), then reg(ℜ/I) = reg(ℜ/(I, c)).
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Lemma 2.10 ( [29, Lemma 3.1]). Let α ≥ 2 be an integer, and consider {D j : 1 ≤ j ≤ α} and
{Fi : 0 ≤ i ≤ α} be a sequence of Zγ-graded ℜ-modules, and consider the following chain of short
exact sequences:

0 −→ D1 −→ F0 −→ F1 −→ 0,

0 −→ D2 −→ F1 −→ F2 −→ 0,
...

0 −→ Dα−1 −→ Fα−2 −→ Fα−1 −→ 0,

0 −→ Dα −→ Fα−1 −→ Fα −→ 0.

a. If depthDα ≤ depthFα and depthD j−1 ≤ depthD j, for all 2 ≤ j ≤ α, then depthF0 = depthD1.
b. If depthFα ≤ depthDα and depthD j−1 ≤ depthD j, for all 2 ≤ j ≤ α, then by applying Lemma 2.4

and Lemma 2.7 on the chain of short exact sequences, we obtain

depthFα ≤ depthF0 ≤ depthD1.

c. If regDα < regFα and regD j−1 ≤ regD j, for all 2 ≤ j ≤ α, then by applying Lemma 2.9 on the
chain of short exact sequences, we get

regF0 = regFα.

3. Depth, projective dimension, stanley depth, Krull dimension, and Cohen–Macaulay graphs

We determine the depth, projective dimension, Stanley depth, and Krull dimension ofℜ/J for Pγ,
extend these results to Cγ and characterize all Cohen–Macaulay graphs within defined families.

Theorem 3.1. Letℜ = K[V(Pγ)] and J = I(Pγ). If γ ≥ 1, then

depth(ℜ/J) = sdepth(ℜ/J) =
⌈
γ

3

⌉
.

Proof. We begin by proving the result for depth. For γ ≤ 2, P1 � Km and P2 � K2m which
complements our result. For γ = 3, define Ji := (Ji−1, a

i
2) for 1 ≤ i ≤ m, with J0 = J; we obtain the

following chain of sequences:

0→ℜ/(J : a12)→ℜ/J →ℜ/J1 → 0,
0→ℜ/(J1 : a22)→ℜ/J1 →ℜ/J2 → 0,

...

0→ℜ/(Jm−2 : am−1
2 )→ℜ/Jm−2 →ℜ/Jm−1 → 0,

0→ℜ/(Jm−1 : am2 )→ℜ/Jm−1 →ℜ/Jm → 0.

The following isomorphisms hold:

ℜ/(Jm−1 : am2 ) � K[am2 ],
ℜ/Jm � K[V(P1)]/J(P1) ⊗K K[V(Km)]/I(Km).

AIMS Mathematics Volume 10, Issue 12, 29650–29663.



29655

Using Lemma 2.6 implies

depth(ℜ/(Jm−1 : am2 )) = 1,
depth(ℜ/Jm) = 2.

Since depth(ℜ/(Jm−1 : am2 )) ≤ depth(ℜ/Jm) and depth(ℜ/(Ji−1 : ai2)) = 1, by Lemma 2.10(a) , we
get

depth(ℜ/J) = 1 =
⌈
γ

3

⌉
.

For γ ≥ 4, the proof proceeds by induction and construction of short exact sequences. As before,
defining Ji := (Ji−1, a

i
γ−1) for 1 ≤ i ≤ m, with J0 = J, we obtain the following chain of sequences:

0→ℜ/(J : a1γ−1)→ℜ/J →ℜ/J1 → 0,

0→ℜ/(J1 : a2γ−1)→ℜ/J1 →ℜ/J2 → 0,
...

0→ℜ/(Jm−2 : am−1
γ−1 )→ℜ/Jm−2 →ℜ/Jm−1 → 0,

0→ℜ/(Jm−1 : amγ−1)→ℜ/Jm−1 →ℜ/Jm → 0.

The following isomorphisms hold:

ℜ/(Jm−1 : amγ−1) � K[V(Pγ−3)]/J(Pγ−3) ⊗K K[amγ−1],

ℜ/Jm � K[V(Pγ−2)]/J(Pγ−2) ⊗K K[V(Km)]/I(Km).

Using the induction hypothesis along with Lemmas 2.5 and 2.6 implies

depth(ℜ/(Jm−1 : amγ−1)) =
⌈
γ − 3

3

⌉
+ 1 =

⌈
γ

3

⌉
,

depth(ℜ/Jm) =
⌈
γ − 2

3

⌉
+ 1 =

⌈
γ + 1

3

⌉
.

Since depth(ℜ/(Jm−1 : amγ−1)) ≤ depth(ℜ/Jm) and depth(ℜ/(Ji−1 : aiγ−1)) =
⌈
γ

3

⌉
, by Lemma 2.10(a),

we get

depth(ℜ/J) =
⌈
γ

3

⌉
.

The Stanley depth follows identically by replacing depth with Stanley depth throughout the proof.
□

Corollary 3.2. Letℜ = K[V(Pγ)] and J = I(Pγ). If γ ≥ 1, then

pdim(ℜ/J) = mγ −
⌈
γ

3

⌉
.

Proof. The corollary follows directly from [25, Theorems 1.3.3] and Theorem 3.1. □

Theorem 3.3. Letℜ = K[V(Pγ)] and J = I(Pγ). If γ ≥ 1, then

dim(ℜ/J) =
⌈
γ

2

⌉
.
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Proof. Lemma 2.2 and Pγ = Pγ⊠Km imply α(Pγ) = ⌈γ/2⌉. Lemma 2.1 then completes the proof. □

Theorem 3.4. Letℜ = K[V(Cγ)] and J = I(Cγ). If γ ≥ 3, then⌈
γ − 1

3

⌉
≤ depth(ℜ/J), sdepth(ℜ/J) ≤

⌈
γ

3

⌉
.

Proof. We begin by proving the result for depth. For γ = 3, define Ji := (Ji−1, a
i
2) for 1 ≤ i ≤ m, with

J0 = J; we obtain the following chain of sequences:

0→ℜ/(J : a12)→ℜ/J →ℜ/J1 → 0,
0→ℜ/(J1 : a22)→ℜ/J1 →ℜ/J2 → 0,

...

0→ℜ/(Jm−2 : am−1
2 )→ℜ/Jm−2 →ℜ/Jm−1 → 0,

0→ℜ/(Jm−1 : am2 )→ℜ/Jm−1 →ℜ/Jm → 0.

The following isomorphisms hold:

ℜ/(Jm−1 : am2 ) � K[am2 ],
ℜ/Jm � K[V(P2)]/J(P2).

Using Lemma 2.6 implies

depth(ℜ/(Jm−1 : am2 )) = 1,
depth(ℜ/Jm) = 1.

Since depth(ℜ/(Jm−1 : am2 )) ≤ depth(ℜ/Jm) and depth(ℜ/(Ji−1 : ai2)) = 1, by Lemma 2.10(a), we
get

depth(ℜ/J) = 1.

For γ ≥ 4, defining Ji := (Ji−1, a
i
γ−1) for 1 ≤ i ≤ m as before, with J0 = J; we obtain the following

chain of sequences:

0→ℜ/(J : a1γ−1)→ℜ/J →ℜ/J1 → 0,

0→ℜ/(J1 : a2γ−1)→ℜ/J1 →ℜ/J2 → 0,
...

0→ℜ/(Jm−2 : am−1
γ−1 )→ℜ/Jm−2 →ℜ/Jm−1 → 0,

0→ℜ/(Jm−1 : amγ−1)→ℜ/Jm−1 →ℜ/Jm → 0.

The following isomorphisms hold:

ℜ/(Jm−1 : amγ−1) � K[V(Pγ−3)]/J(Pγ−3) ⊗K K[amγ−1],

ℜ/Jm � K[V(Pγ−1)]/J(Pγ−1).
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Using Theorem 3.1 along with Lemmas 2.5 and 2.6 implies

depth(ℜ/(Jm−1 : amγ−1)) =
⌈
γ − 3

3

⌉
+ 1 =

⌈
γ

3

⌉
,

depth(ℜ/Jm) =
⌈
γ − 1

3

⌉
.

Since depth(ℜ/Jm) ≤ depth(ℜ/(Jm−1 : amγ−1)) and depth(ℜ/(Ji−1 : aiγ−1)) =
⌈
γ

3

⌉
, Lemma 2.10(b)

concludes that ⌈
γ − 1

3

⌉
≤ depth(ℜ/J) ≤

⌈
γ

3

⌉
.

The Stanley depth follows identically by replacing depth with Stanley depth throughout the proof.
□

Remark 3.5. Letℜ = K[V(Cγ)] and J = I(Cγ). If γ ≥ 3 and γ ≡ 0, 2(mod3), then

depth(ℜ/J) =
⌈
γ

3

⌉
.

Corollary 3.6. Letℜ = K[V(Cγ)], J = I(Cγ), and γ ≥ 3; then:

a. If γ ≡ 0, 2(mod3), then

pdim(ℜ/J) = mγ −
⌈
γ

3

⌉
.

b. If γ ≡ 1(mod3), then

mγ −
⌈
γ

3

⌉
≤ pdim(ℜ/J) ≤ mγ −

⌈
γ − 1

3

⌉
.

Proof. The corollary is immediate from [25, Theorem 1.3.3] and Theorem 3.4. □

Theorem 3.7. Letℜ = K[V(Cγ)] and J = I(Cγ). If γ ≥ 3, then

dim(ℜ/J) =
⌊
γ

2

⌋
.

Proof. Lemma 2.2 and Cγ = Cγ ⊠ Km imply α(Cγ) = ⌊γ/2⌋. Lemma 2.1 then completes the proof. □

Theorem 3.8. For γ ≥ 1, a graph Pγ is Cohen–Macaulay if and only if γ = 1, γ = 2, or γ = 4.

Proof. The result is immediate from Theorems 3.1 and 3.3. □

Theorem 3.9. For γ ≥ 3, a graph Cγ is Cohen–Macaulay if and only if γ = 3 or γ = 5.

Proof. The result is immediate from Theorems 3.4 and 3.7. □
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4. Castelnuovo-Mumford regularity

The Castelnuovo-Mumford regularity of ℜ/J is determined for edge ideals of Pγ and Cγ, where
Pγ = Pγ ⊠ Km and Cγ = Cγ ⊠ Km.

Theorem 4.1. Letℜ = K[V(Pγ)] and J = I(Pγ). If γ ≥ 1, then

reg(ℜ/J) =
⌈
γ

2

⌉
.

Proof. For γ ≤ 2, the graph is complete, that is, P1 � Km and P2 � K2m, which complements our
main result. For γ = 3, define Ji := (Ji−1, a

i
2) for 1 ≤ i ≤ m, with J0 = J; we obtain the following chain

of sequences:

0→ℜ/(J : a12)→ℜ/J →ℜ/J1 → 0,
0→ℜ/(J1 : a22)→ℜ/J1 →ℜ/J2 → 0,

...

0→ℜ/(Jm−2 : am−1
2 )→ℜ/Jm−2 →ℜ/Jm−1 → 0,

0→ℜ/(Jm−1 : am2 )→ℜ/Jm−1 →ℜ/Jm → 0.

The following isomorphisms hold:

ℜ/(Jm−1 : am2 ) � K[am2 ],
ℜ/Jm � K[V(P1)]/J(P1) ⊗K K[V(Km)]/I(Km).

Using Lemma 2.6 implies

reg(ℜ/(Jm−1 : am2 )) = 1,
reg(ℜ/Jm) = 2.

Since reg(ℜ/(Jm−1 : am2 )) < reg(ℜ/Jm) and reg(ℜ/(Ji−1 : ai2)) = 1, by Lemma 2.10(a), we get

reg(ℜ/J) = 2 =
⌈
γ

2

⌉
.

For γ ≥ 4, the proof proceeds by induction and construction of short exact sequences. Define
Ji := (Ji−1, a

i
γ−1) for 1 ≤ i ≤ m, with J0 = J; we obtain the following chain of sequences:

0→ℜ/(J : a1γ−1)→ℜ/J →ℜ/J1 → 0,

0→ℜ/(J1 : a2γ−1)→ℜ/J1 →ℜ/J2 → 0,
...

0→ℜ/(Jm−2 : am−1
γ−1 )→ℜ/Jm−2 →ℜ/Jm−1 → 0,

0→ℜ/(Jm−1 : amγ−1)→ℜ/Jm−1 →ℜ/Jm → 0.

The following isomorphisms hold:

ℜ/(Jm−1 : amγ−1) � K[V(Pγ−3)]/J(Pγ−3) ⊗K K[amγ−1],
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ℜ/Jm � K[V(Pγ−2)]/J(Pγ−2) ⊗K K[V(Km)]/I(Km).

Using the induction hypothesis along with Lemmas 2.5(c) and 2.8 implies

reg(ℜ/(Jm−1 : amγ−1)) =
⌈
γ − 3

2

⌉
,

reg(ℜ/Jm) =
⌈
γ − 2

2

⌉
+ 1 =

⌈
γ

2

⌉
.

Since reg(ℜ/Jm) < reg(ℜ/(Jm−1 : amγ−1)) and reg(ℜ/(Ji−1 : aiγ−1)) =
⌈
γ−3

2

⌉
, Lemma 2.10(c)

concludes that
reg(ℜ/J) =

⌈
γ

2

⌉
.

□

Theorem 4.2. Letℜ = K[V(Cγ)] and J = I(Cγ). If γ ≥ 3, then

reg(ℜ/J) =
⌈
γ − 1

2

⌉
.

Proof. For γ = 3, define Ji := (Ji−1, a
i
2) for 1 ≤ i ≤ m, with J0 = J; we obtain the following chain of

sequences

0→ℜ/(J : a12)→ℜ/J →ℜ/J1 → 0,
0→ℜ/(J1 : a22)→ℜ/J1 →ℜ/J2 → 0,

...

0→ℜ/(Jm−2 : am−1
2 )→ℜ/Jm−2 →ℜ/Jm−1 → 0,

0→ℜ/(Jm−1 : am2 )→ℜ/Jm−1 →ℜ/Jm → 0.

The following isomorphisms hold:

ℜ/(Jm−1 : am2 ) � K[am2 ],
ℜ/Jm � K[V(P2)]/J(P2).

Using Lemma 2.6 and Theorem 4.1 implies

reg(ℜ/(Jm−1 : am2 )) = 0,
reg(ℜ/Jm) = 1.

Since reg(ℜ/(Jm−1 : am2 )) < reg(ℜ/Jm) and reg(ℜ/(Ji−1 : ai2)) = 1, by Lemma 2.10(c), we get

reg(ℜ/J) = 1 =
⌈
γ − 1

2

⌉
.

For γ ≥ 4, the proof proceeds by induction and construction of short exact sequences. Define
Ji := (Ji−1, a

i
γ−1) for 1 ≤ i ≤ m, with J0 = J; we obtain the following chain of sequences:

0→ℜ/(J : a1γ−1)→ℜ/J →ℜ/J1 → 0,
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0→ℜ/(J1 : a2γ−1)→ℜ/J1 →ℜ/J2 → 0,
...

0→ℜ/(Jm−2 : am−1
γ−1 )→ℜ/Jm−2 →ℜ/Jm−1 → 0,

0→ℜ/(Jm−1 : amγ−1)→ℜ/Jm−1 →ℜ/Jm → 0.

The following isomorphisms hold:

ℜ/(Jm−1 : amγ−1) � K[V(Pγ−3)]/J(Pγ−3) ⊗K K[amγ−1],

ℜ/Jm � K[V(Pγ−1)]/J(Pγ−1).

Using Theorem 4.1 along with Lemmas 2.5(c) and 2.8 implies

reg(ℜ/(Jm−1 : amγ−1)) =
⌈
γ − 3

2

⌉
,

reg(ℜ/Jm) =
⌈
γ − 1

2

⌉
.

Since reg(ℜ/Jm) < reg(ℜ/(Jm−1 : amγ−1)) and reg(ℜ/(Ji−1 : aiγ−1)) =
⌈
γ−3

2

⌉
, Lemma 2.10(c)

concludes that

reg(ℜ/J) =
⌈
γ − 1

2

⌉
.

□

5. Concluding remarks

This paper provides a comprehensive analysis of the homological algebra of edge ideals for strong
products Pγ = Pγ ⊠ Km and Cγ = Cγ ⊠ Km. For these graph classes, we have derived explicit
combinatorial formulas that precisely determine several key invariants of the quotient ring ℜ/I(G),
notably including depth, projective dimension, Stanley depth, Krull dimension, and
Castelnuovo-Mumford regularity.

A central achievement is the complete characterization of the Cohen–Macaulay property within
these families. Our results demonstrate how strong product operation with a complete graph Km

imposes a specific combinatorial structure that determines the resulting algebraic properties. Unlike
Cartesian or direct products, the strong product’s denser connectivity imposes a rich combinatorial
constraint that is directly reflected in these homological invariants. The precise nature of our formulas
provides a foundational reference point for investigating the homological properties of edge ideals
derived from more sophisticated graph constructions.

6. Open problems and future research

The research presented herein naturally gives rise to several compelling research directions.

• Strong product of arbitrary graphs: A fundamental challenge and a broader goal is to find
general bounds or formulas for reg(I(G ⊠ H)) for arbitrary graphs G and H. Can the regularity
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be expressed in terms of the regularities and other combinatorial invariants of the factor graphs G
and H?
• Extended algebraic properties: Investigating algebraic properties beyond the Cohen–Macaulay

condition presents a natural direction. Promising research problems include characterizing when
these edge ideals admit linear resolutions, studying the behavior of symbolic powers, and
exploring connections to other homological invariants.
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