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Abstract: This paper investigates algebraic invariants of edge ideals associated with families of graphs
constructed as the strong product of a path or cycle with the complete graph K,,, namely &, = P,RK,,
and ¢, = C, ® K,,. For an edge ideal /(G) C R in a polynomial ring over a field K, we derive explicit
combinatorial formulas for key homological and ring-theoretic invariants of the quotient ring R /I(G).
These include Castelnuovo-Mumford regularity, depth, Stanley depth, projective dimension, and Krull
dimension. Furthermore, we characterize all Cohen—-Macaulay graphs in defined families, providing a
complete classification where R /I(G) is Cohen—Macaulay.
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1. Introduction

Let R = K[cy,...,¢,] be a polynomial ring in y variables over a field K, and G be a simple graph
with vertex set V(G) = {c,...,¢,}. The edge ideal of G, denoted I(G), is the ideal in R generated by
all monomials ¢;¢; corresponding to edges {c;, ¢;} € E(G). In other words, I(G) = (¢;¢; : {¢;, ¢;} € E(G))
is generated by monomials representing the edges of G.

Let F be a finitely generated Z”-graded R-module. Let u € F be a homogeneous element and
Z C {cy,...,¢}. The K-subspace uK[Z] generated by all elements uv with v € K[Z] is called a Stanley
space of dimension |Z]| if it is a free K[Z]-module. Here, as usual, |Z| denotes the number of elements
of Z. A decomposition & of F as a finite direct sum of Stanley spaces is called a Stanley decomposition
of F. The minimum dimension of a Stanley space in ¥ is called the Stanley depth of & and is denoted
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by sdepth(Z). The quantity
sdepth(FF) := max {sdepth(2) | Z is a Stanley decomposition of [F}

is called the Stanley depth of F [1].

We say that F satisfies Stanley’s inequality if depth(F) < sdepth(F). Stanley’s conjecture proposes
that a fundamental relationship between depth and Stanley depth holds for any module F, namely that
the Stanley depth is always at least the depth [1]. This was refuted in 2016 by Duval et al. [2]. For
monomial ideals I c J c ‘R, the Stanley depth sdepth(J/I) is an invariant of a purely combinatorial
nature [3]. Furthermore, it continues to exhibit properties that are analogous to those of classical depth;
see references [4-9].

In combinatorial commutative algebra, invariants derived from minimal free resolutions play a
central role. For a graded module F over a polynomial ring R that admits a free resolution, the graded
minimal free resolution is an exact sequence of the form

0 — @ %(_j)ﬂp,j(F) N @ ‘R‘(_]’)ﬁy—]ﬁj(F) —y e — @ %(_]’)ﬂo.j(F) —F—0.

JEZ JEZ JEZ

The graded Betti numbers g; ;(IF) count the number of minimal generators of degree j in the i-th syzygy
module. From these Betti numbers, two fundamental invariants are defined, namely the Castelnuovo—
Mumford regularity

reg(F) = max{j — i : §,(F) # O},

and the projective dimension
pdim(F) = max{i : g; j(F) # 0 for some j}.

The Castelnuovo-Mumford regularity reg(IF) measures the maximum degree shift required
throughout the minimal free resolution and bounds the degrees of the generators required at each step
of the resolution. In contrast, the projective dimension pdim(IF) measures the length of resolution,
indicating the number of syzygy steps required. Together, these invariants provide complementary
measures of the homological complexity of F and have been extensively studied for edge ideals and
other monomial ideals [10-15].

A graph G is said to be Cohen—Macaulay if the quotient ring R /I(G) is Cohen—Macaulay over every
field K. The graph is called unmixed if its edge ideal /(G) is unmixed over every field K, a condition
equivalent to all minimal vertex covers of G having the same cardinality [16]. It is well-established that
every Cohen—Macaulay graph is unmixed [17]. Furthermore, for chordal graphs, the Cohen—Macaulay
property is known to be independent of the choice of field K [18].

In this article, we determine explicit combinatorial formulas for key homological invariants of rings
R/I(Z,) and R/I(€,), where &, = P, R K,, and ¢, = C, R K,, are the strong products of a path
or cycle, respectively, with the complete graph K. Our results demonstrate a profound connection
between the combinatorial structure of these graph classes and algebraic properties of their associated
edge ideals. We acknowledge the use of CoCoA [19] and Macaulay?2 [20].

We conclude this introduction by outlining the structure of the paper. Section 2 reviews essential
preliminary concepts and established results on graph products and monomial ideals. Section 3
presents our study of algebraic invariants, including a characterization of Cohen—Macaulay graphs.
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Our results on Castelnuovo—Mumford regularity are developed in Section 4. Section 5 presents
concluding remarks on the research. Finally, Section 6 discusses open questions and potential
generalizations of our work.

2. Notation and preliminaries

This section gives a brief overview of the graph-theoretic and algebraic concepts that are central
to this work. The strong product of graphs G and H, denoted G ® H, is a graph whose vertex set
is V(Gr H) = V(G) x V(H) and for (¢,d),(e,f) € V(G ® H), {(¢,d),(e,f)} € E(G ® H), whenever
{c,e} € E(G)and d =f, or {d,f} € E(H) and ¢ = ¢, or {¢, e} € E(G) and {d,{} € E(H) [21].

Define &2, := P, R K, fory > 1, and ¢, := C, ® K,, for y > 3. Let V(&,) = V(%,) =
{al,...,a" | 1 <i < vy} be the vertex set for both families of graphs. In .2,, the vertices are arranged

in m horizontal layers. In contrast, 6, arranges them in m concentric layers (see Figure 1). Clearly,
V(2 = V(&) = my.

WARAIANA
PP

A
4

Figure 1. Vertex labeling of &7; = P; ® K; (left) and %), = C1, ® K3 (right).

An independent set of a graph G is a subset X of the vertex set V(G) such that for any two distinct
vertices u,v € X, the edge {u,v} ¢ E(G). The independence number of G, denoted by a(G), is the
maximum cardinality of an independent set in G. That is,

a(G) = max{|X]| : X € V(G) is an independent set}.
Lemma 2.1 ([22, Lemma 1]). If J = I(G), then dim(R/I) = a(G).
Lemma 2.2 ( [23, Corollary 3]). For a complete graph K,, on m > 1 vertices,
a(Gr K,) = a(G).

A subgraph H of G is an induced subgraph if every edge of G having its endpoints in V(H) is also
an edge of H. Equivalently, H is induced if E(H) consists of all edges of G whose endpoints belong
to V(H). If T € V(G), the induced subgraph of G with vertex set T is denoted by G[T]. A matching
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is a set of edges, no two of which share a vertex. An induced matching is a matching M for which
G[V(M)] contains exactly the edges of M. The induced matching number of graph G is the invariant
im(G) given by

im(G) = max{|M| : M € E(G) is an induced matching}.

Lemma 2.3 ( [24, Corollary 6.9]). Let G be a chordal graph and J = I(G); then reg(R/J) = im(G).

Lemma 2.4. For a short exact sequence 0 — F, — F; — F3 — 0 of Z7-graded R-modules:
depth(F;) > min{depth(F,), depth(F3)},

and
sdepth(IF;) > min{sdepth(FF,), sdepth(F5)}.

The first inequality follows from [25, Proposition 1.2.9] and the second from [5, Lemma 2.2].

Lemma 2.5. Let R =Rex Kl[¢y+1] be a polynomial ring of variables y + 1 and I be a monomial ideal
of R. If U =R/l and V = R/I, then:

a. depth(U) = depth(V) + 1.
b. sdepth(U) = sdepth(V) + 1.
c. reg(U) = reg(V).

The results for depth and Stanley depth are consequences of [3, Lemma 3.6], with the result for
regularity following from [26, Lemma 3.5].

Forl <n <y if R = K[cr,..., 0, Cet1s-... 6] With Jy € Ry = K[¢y,...,q,]and J, ¢ R, =
K[¢ns1s - - ., ¢y] are monomial ideals, then R /(J; + J,) = R/J; ® R,/J, by [17, Proposition 2.2.20].
Thus, depth(R /(J1+J>)) = depth(R/J1®xR,/J,) and sdepth(R /(J1+J>)) = sdepth(R/J1®@xR,/J>).
The following lemma is obtained by applying [17, Proposition 2.2.21] for depth, and [5, Theorem 3.1]
for Stanley’s depth.

Lemma 2.6. Let J; ¢ R = K[c,...,0,], o € Ry = Klep1,...,¢] be monomial ideals and
R = Klers .oy G Guttsenen 6, for 1 < n < Y. Then
depth%(%l/Jl Rk %2/.]2) = depth%(?%/(Jl + Jz)) = depth%(%l/h) + depth%(?%z/h), and
sdepthy (R1/J) ® R,/ J2) = sdepthy (R1/Jy) + sdepthy ,(R,/ ).

Lemma 2.7. Let I be a monomial ideal of R and ¢ € R suchthatc ¢ 1. If U = R/(I : ¢)and V = R/I,
then depth(U) > depth(V) and sdepth(U) > sdepth(V).

The first inequality follows from [5, Corollary 1.3] and the second from [7, Proposition 2.7].

Lemma 2.8 ( [27, Lemma 8]). For 1 < n <y, let R = Klcy,..., ¢, CGp1,..., ] with J; € Ry =
Klcy, ..., ], and J, € Ry = K[y, - . -, ¢,] e edge ideals, then

reg(R/(J; + o)) = reg(R/J)) + reg(R,/ ).

Lemma 2.9 ( [28, Corollary 20.19]). Let ¢ € R and the monomial ideal I c R. If reg(R/(I : ¢)) <
reg(R/(I, ¢)), then reg(R /1) = reg(R/(, ¢)).
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{F; : 0 < i < a} be a sequence of Z”-graded ‘R-modules, and consider the following chain of short
exact sequences:

Lemma 2.10 ( [29, Lemma 3.1]). Let @ > 2 be an integer, and consider {D; : 1 < j < a} and

0—D —F,— F —0,

0—)D2—>F1—>F2_>0a

0— Da—l B Faf—Z B H:{?af—] B 0’
0O—oDb, —F,.1 —F, —0.

a. If depthD, < depthF, and depthDD;_; < depthD;, for all2 < j < a, then depthFy = depthD;.
b. IfdepthF, < depthD, and depthD;_; < depthD,, for all 2 < j < «, then by applying Lemma 2.4
and Lemma 2.7 on the chain of short exact sequences, we obtain

depth F, < depthFj < depth D).

c. IfregD, < regF, andregD;_ | <regDj, forall 2 < j < a, then by applying Lemma 2.9 on the
chain of short exact sequences, we get

regFy =regF,.
3. Depth, projective dimension, stanley depth, Krull dimension, and Cohen-Macaulay graphs

We determine the depth, projective dimension, Stanley depth, and Krull dimension of R /J for 22,
extend these results to 4, and characterize all Cohen—-Macaulay graphs within defined families.

Theorem 3.1. Let R = K[V(Z)] and J = I(Z,). If y > 1, then

depth(R /J) = sdepth(R /J) = m :

Proof. We begin by proving the result for depth. For y < 2, &, = K, and &, = K,, which
complements our result. For y = 3, define J; := (J;_y, ag) for 1 <1 < m, with J, = J; we obtain the
following chain of sequences:

0— R/(J:a) = R/J— R/J -0,
0—R/(J;:3) = R/, = R/J, -0,

0—- %/(Jm—Z : alzn_l) - %/Jm—Z - %/‘lm—l - 09
0> R/(Upy:05) > R/ —» R/J, — 0.

The following isomorphisms hold:

R/(Ip-r 2 03) = K[a7'],
R/ = KIV(ZD1/I(P) @ KIV(Ka) 1/ 1(K).
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Using Lemma 2.6 implies
depth(R /(J1 © a§)) = 1,
depth(R/J,) = 2.

Since depth(R /(-1 @ a5)) < depth(R/J,,) and depth(R/(J_; : a})) = 1, by Lemma 2.10(a) , we

get

depth(R/J) = 1 = m

For y > 4, the proof proceeds by induction and construction of short exact sequences. As before,
defining J; := (J;_y, a;_l) for 1 <i < m, with Jy = J, we obtain the following chain of sequences:

0—-R/(J: a,ly_l) —-R/J—->R/J, =0,
0—-R/(Jy:a2 ) > R/J - R/J, -0,

0— %/(Jm—Z . a;n_—ll) - 9%/Jm—Z - %/Jm—l - O’
0—-R/(Jp: ) — R/Ju1 = R/, — 0.

The following isomorphisms hold:

R/t =) ) = KIV(Py-3)1/ I (Py-3) @ K] ],
R/ = KIV(Zy- )1/ I(Py-2) & KIV(K)]/ LK)

Using the induction hypothesis along with Lemmas 2.5 and 2.6 implies

-3
depth(R /(J,u-1 : a,)) = PTX +1= m
depth(R/J,) = {%ﬂ +1= y-3|— ! .

Since depth(R /(J,,_1 : al )< depth(*R/J,,) and depth(R /(J,_; : a;_l)) = [g-l , by Lemma 2.10(a),
we get

depth(R /J) = M

3
The Stanley depth follows identically by replacing depth with Stanley depth throughout the proof.
O
Corollary 3.2. Let R = K[V(Z,))] and J = (). If y > 1, then
pdim(R/J) = my — %-‘ .
Proof. The corollary follows directly from [25, Theorems 1.3.3] and Theorem 3.1. O

Theorem 3.3. Let R = K[V(Z)] and J = I(Z,). If y = 1, then

dim(R/J) = m
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Proof. Lemma 2.2 and &, = P,RK,, imply a(#,) = ['y/2]. Lemma 2.1 then completes the proof. O
Theorem 3.4. Let R = K[V(€,)] and J = I(€,). If y > 3, then

P; ﬂ < depth(R /J), sdepth(R /J) < m

Proof. We begin by proving the result for depth. For y = 3, define J; := (J;_1, a}) for 1 < i < m, with
Jo = J; we obtain the following chain of sequences:

0—R/(J:a) — R/J— R/J =0,
0— R/(J;: 1) = R/J, = R/J, =0,

0— %/(Jm—Z : arzn—l) - %/Jm—Z - %/Jm—l - 07
0> R/(Jp-1:05) > R/Jpy = R/J, — 0.

The following isomorphisms hold:

R/(p-1 : a3) = K[a7'],
R/ = KIV(P)1]I(P).

Using Lemma 2.6 implies

depth(R/(Jy1 @ 03)) = 1,
depth(R/J,) = 1.

Since depth(R/(J,—1 : 7)) < depth(R/J,,) and depth(R/(Ji; : a))) = 1, by Lemma 2.10(a), we
get

depth(R/J) = 1.

For y > 4, defining J; := (J;_, a;_l) for 1 < i < m as before, with J, = J; we obtain the following
chain of sequences:

0-R/(J:a_)—>R/J-> R/ -0,
0> R/ : ) > R/ - R/ -0,

0— S)%/(Jm—Z . 021_—11) - %/Jm—Z - %/Jm—l - Oa
0—- %/(Jm—l : a;”_l) - s)%/Jm—l - Q%/Jm - 0.

The following isomorphisms hold:

R/ (-1 2 L)) 2 K[V(P,-3)]/ I (Py-3) @ Kla)_ ],
%/Jm = K[V(gzy—l)]/-](yy—l)

AIMS Mathematics Volume 10, Issue 12, 29650-29663.



29657

Using Theorem 3.1 along with Lemmas 2.5 and 2.6 implies

_3
depth(R /(J1 : Q) = PT} +1= M

depth(R/J,,) = F%ﬂ .

Since depth(R/J,,) < depth(R/(J,— : ) and depth(R/(Ji; : a_)) = [Z], Lemma 2.10(b)

concludes that

y—1
3

< depth(R/J) < m .

The Stanley depth follows identically by replacing depth with Stanley depth throughout the proof.

Remark 3.5. Let R = K[V(€,)] and J = I(E,). If y > 3 and y = 0, 2(mod3), then

depth(R /) = m

Corollary 3.6. Let R = K[V(%6,)], J = I(¢,), and y > 3; then:

a. If y = 0,2(mod3), then

pdim(R/J) = my — m .

b. If y = 1(mod3), then

my — m < pdim(R/J) < my — P;ﬂ .

3

Proof. The corollary is immediate from [25, Theorem 1.3.3] and Theorem 3.4.

Theorem 3.7. Let R = K[V(%,)] and J = (). If y = 3, then

dim(R /J) = gJ

O

Proof. Lemma 2.2 and ¢, = C, ® K,, imply (%)) = [y/2]. Lemma 2.1 then completes the proof. O

Theorem 3.8. Fory > 1, a graph &2, is Cohen—-Macaulay if and only if y =1,y =2, ory = 4.

Proof. The result is immediate from Theorems 3.1 and 3.3.

Theorem 3.9. Fory > 3, a graph €, is Cohen—Macaulay if and only if y =3 ory = 5.

Proof. The result is immediate from Theorems 3.4 and 3.7.

O
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4. Castelnuovo-Mumford regularity

The Castelnuovo-Mumford regularity of R/J is determined for edge ideals of &, and ¢, where
P, =P,RK, and 6, = C, R K,,.
Theorem 4.1. Let R = K[V(Z)] and J = I(Z,). If y > 1, then

reg(R/J) = Pﬂ

Proof. For y < 2, the graph is complete, that is, &, = K,, and &, = K,,,, which complements our
main result. For y = 3, define J; := (J;_y, aé) for 1 <i < m, with Jy = J; we obtain the following chain
of sequences:

0— R/(J:a) = R/J— R/J — 0,
0— R/(J;:3) = R/J, —» R/, =0,

0— R/Jpo:ad™ >R/ Iy — R/ Iy — 0,
0> R/(Upy:05)—> R/ Ty —» R/J, — 0.

The following isomorphisms hold:

R/(p-1 2 03) = K[a7'],
R/ = KIV(ZD]/I(P) & KIV(K)]/1(Ky).

Using Lemma 2.6 implies

reg(R /(S 7)) =1,
reg(R/J,) = 2.

Since reg(R /(-1 @ af)) < reg(R/J,,) and reg(R/(Ji-; : a})) = 1, by Lemma 2.10(a), we get

reg(R/J) =2 = [ﬂ

For v > 4, the proof proceeds by induction and construction of short exact sequences. Define
Ji =i, a;_l) for 1 <i < m, with Jy = J; we obtain the following chain of sequences:

0—-R/(J:a,_)—>R/J-> R/ -0,
0—-R/(J;: ai_l) —-R/J, > R/J, -0,

0—- %/(Jm—Z . a;n_—ll) - Q%/Jm—Z - 9%/Jm—l - O,
0—>R/(Jp: ) — R/Ju1 = R/J,, — 0.

The following isomorphisms hold:
R/(Um-r 2 0y 2 K[V(P-3)]/J(Py-3) @ K[a} ],

y—1
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R/ = KIV(P,2)1/I(Py2) @ KIV(K)]/I(Kp).

Using the induction hypothesis along with Lemmas 2.5(c) and 2.8 implies

-3
reg(R/(Jp-1 2 ) = F/T}
-2
reg(R/J,) = PT} +1= Pﬂ

Since reg(R/J,) < reg(R/(J,_1 : a? 1)) and reg(R/(Ji.y a;_l)) = [7%3], Lemma 2.10(c)
concludes that

reg(R/J) = m

Theorem 4.2. Let R = K[V(€,)] and J = I(€,). If y > 3, then

-1
reg(R/J) = PTX

Proof. For y = 3, define J; := (J;_1, aé) for 1 <i < m, with Jy = J; we obtain the following chain of
sequences

0— R/(J:a) = R/J— R/J, -0,
0— R/(J;:03) = R/J, —» R/, =0,

0—- s)%/(Jm—Z : arzn—l) - %/Jm—2 - %/Jm—l - O,
0> R/(Upy:05) > R/ Ty —» R/J, — 0.

The following isomorphisms hold:

R/ (s : ) = Ko,
R /T,y = KIV(P)I]I(P).

Using Lemma 2.6 and Theorem 4.1 implies

reg(R/(Jn-1 1 03)) = 0,
reg(R/J,) = 1.

Since reg(R/(Jy-1 : a3)) < reg(R/J,,) and reg(R/(J;_; : ag)) = 1, by Lemma 2.10(c), we get
reg(R/J) =1 = P%w .

For y > 4, the proof proceeds by induction and construction of short exact sequences. Define
Ji =i, a;_l) for 1 <i < m, with J, = J; we obtain the following chain of sequences:

0-R/(J:a,_)—>R/J-> R/ -0,

AIMS Mathematics Volume 10, Issue 12, 29650-29663.
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0—-R/(Ji:a )= R/J - R[], -0,

0—- %/(Jm—Z . a;n_—ll) - %/Jm—Z - %/Jm—l - 07
0—-R/(Jp: ) — R/Ju1 = R/J,, — 0.

The following isomorphisms hold:

R/ (et : ) = KIV(2, )|/ J(P,3) @ Kl ],
R/ = KIV(2, D1/ I(P,0).

Using Theorem 4.1 along with Lemmas 2.5(c) and 2.8 implies

-3
reg(R/ (St 2 A20)) = PT}

reg(R/J,) = P—_W )
2
Since reg(R/J,) < reg(R/(J,_1 : o’ ) and reg(R/(Ji.y a;_l)) = [7%3], Lemma 2.10(c)
concludes that

-1
reg(R/J) = PTX

5. Concluding remarks

This paper provides a comprehensive analysis of the homological algebra of edge ideals for strong
products &, = P, ® K,, and ¢, = C, B K,,. For these graph classes, we have derived explicit
combinatorial formulas that precisely determine several key invariants of the quotient ring R/I(G),
notably including depth, projective dimension, Stanley depth, Krull dimension, and
Castelnuovo-Mumford regularity.

A central achievement is the complete characterization of the Cohen—Macaulay property within
these families. Our results demonstrate how strong product operation with a complete graph K,
imposes a specific combinatorial structure that determines the resulting algebraic properties. Unlike
Cartesian or direct products, the strong product’s denser connectivity imposes a rich combinatorial
constraint that is directly reflected in these homological invariants. The precise nature of our formulas
provides a foundational reference point for investigating the homological properties of edge ideals
derived from more sophisticated graph constructions.

6. Open problems and future research

The research presented herein naturally gives rise to several compelling research directions.

e Strong product of arbitrary graphs: A fundamental challenge and a broader goal is to find
general bounds or formulas for reg(/(G = H)) for arbitrary graphs G and H. Can the regularity

AIMS Mathematics Volume 10, Issue 12, 29650-29663.
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be expressed in terms of the regularities and other combinatorial invariants of the factor graphs G
and H?

o Extended algebraic properties: Investigating algebraic properties beyond the Cohen—Macaulay
condition presents a natural direction. Promising research problems include characterizing when
these edge ideals admit linear resolutions, studying the behavior of symbolic powers, and
exploring connections to other homological invariants.
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