Research article

Novel oscillation criteria for general third-order nonlinear neutral differential equations

  • Published: 15 December 2025
  • MSC : 34C10, 34K11

  • This research aims to introduce new criteria that guarantee the oscillation of all solutions to third-order nonlinear neutral differential equations in their canonical form. The proposed methodology integrates the comparison principle with first-order differential equations and employs the Riccati substitution technique, which simplifies the complex structure of the equations and transforms them into more analyzable forms. This approach contributes to establishing general and precise oscillation conditions, representing an extension and improvement over previously published work in this field. It is important to note that this study is purely analytical, focusing on the derivation of oscillatory properties and theoretical criteria. To validate the applicability of the results, three numerical examples are provided, demonstrating the capability of the proposed criteria to verify the oscillation of solutions and highlighting both the theoretical and practical significance of the methodology.

    Citation: Fahd Masood, Alanoud Almutairi, Loredana Florentina Iambor, Khalil S. Al-Ghafri, Omar Bazighifan. Novel oscillation criteria for general third-order nonlinear neutral differential equations[J]. AIMS Mathematics, 2025, 10(12): 29607-29626. doi: 10.3934/math.20251301

    Related Papers:

  • This research aims to introduce new criteria that guarantee the oscillation of all solutions to third-order nonlinear neutral differential equations in their canonical form. The proposed methodology integrates the comparison principle with first-order differential equations and employs the Riccati substitution technique, which simplifies the complex structure of the equations and transforms them into more analyzable forms. This approach contributes to establishing general and precise oscillation conditions, representing an extension and improvement over previously published work in this field. It is important to note that this study is purely analytical, focusing on the derivation of oscillatory properties and theoretical criteria. To validate the applicability of the results, three numerical examples are provided, demonstrating the capability of the proposed criteria to verify the oscillation of solutions and highlighting both the theoretical and practical significance of the methodology.



    加载中


    [1] G. S. Ladde, V. Lakshmikantham, B. G. Zhang, Oscillation theory of differential equations with deviating arguments, New York: Marcel Dekker, 1987.
    [2] L. H. Erbe, Q. Kong, B. G. Zhong, Oscillation theory for functional differential equations, New York: Marcel Dekker, 1995.
    [3] T. X. Li, Y. V. Rogovchenko, On asymptotic behavior of solutions to higher-order sublinear Emden-Fowler delay differential equations, Appl. Math. Lett., 67 (2017), 53–59. https://doi.org/10.1016/j.aml.2016.11.007 doi: 10.1016/j.aml.2016.11.007
    [4] R. K. Brayton, R. A. Willoughby, On the numerical integration of a symmetric system of difference-differential equations of neutral type, J. Math. Anal. Appl., 18 (1967), 182–189. https://doi.org/10.1016/0022-247X(67)90191-6 doi: 10.1016/0022-247X(67)90191-6
    [5] M. Slemrod, E. F. Infante, Asymptotic stability criteria for linear systems of difference-differential equations of neutral type and their discrete analogues, J. Math. Anal. Appl., 38 (1972), 399–415. https://doi.org/10.1016/0022-247X(72)90098-4 doi: 10.1016/0022-247X(72)90098-4
    [6] J. K. Hale, Theory of functional differential equations, 2 Eds., New York: Springer, 1977. https://doi.org/10.1007/978-1-4612-9892-2
    [7] Q. Li, R. Wang, F. Chen, T. X. Li, Oscillation of second-order nonlinear delay differential equations with nonpositive neutral coefficients, Adv. Difference Equ., 2015 (2015), 35.
    [8] S. Tamilvanan, E. Thandapani, J. Džurina, Oscillation of second order nonlinear differential equations with sub-linear neutral term, Differ. Equ. Appl., 9 (2017), 29–35. https://doi.org/10.7153/dea-09-03 doi: 10.7153/dea-09-03
    [9] J. Džurina, S. R. Grace, I. Jadlovská, T. X. Li, Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term, Math. Nachr., 293 (2020), 910–922. https://doi.org/10.1002/mana.201800196 doi: 10.1002/mana.201800196
    [10] H. S. Alrashdi, F. Masood, A. M. Alshamrani, S. S. Askar, M. Botros, New oscillation results for noncanonical quasilinear differential equations of neutral type, AIMS Math., 10 (2025), 14372–14391. https://doi.org/10.3934/math.2025647 doi: 10.3934/math.2025647
    [11] S. Aljawi, F. Masood, O. Bazighifan, Oscillation analysis in nonlinear differential equations with mixed neutral terms, Appl. Math. Sci. Eng., 33 (2025), 1–17. https://doi.org/10.1080/27690911.2025.2508175 doi: 10.1080/27690911.2025.2508175
    [12] B. Almarri, O. Moaaz, M. Anis, B. Qaraad, Third-order neutral differential equation with a middle term and several delays: asymptotic behavior of solutions, Axioms, 12 (2023), 166. https://doi.org/10.3390/axioms12020166 doi: 10.3390/axioms12020166
    [13] M. Aldiaiji, B. Qaraad, L. F. Iambor, E. M. Elabbasy, On the asymptotic behavior of class of third-order neutral differential equations with symmetrical and advanced argument, Symmetry, 15 (2023), 1–13. https://doi.org/10.3390/sym15061165 doi: 10.3390/sym15061165
    [14] M. AlKandari, Nonlinear differential equations with neutral term: asymptotic behavior of solutions, AIMS Math., 9 (2024), 33649–33661. https://doi.org/10.3934/math.20241606 doi: 10.3934/math.20241606
    [15] S. H. Saker, Oscillation criteria of third-order nonlinear delay differential equations, Math. Slovaca, 56 (2006), 433–450.
    [16] I. Jadlovská, G. E. Chatzarakis, J. Džurina, S. R. Grace, On sharp oscillation criteria for general third-order delay differential equations, Mathematics, 9 (2021), 1675. https://doi.org/10.3390/math9141675 doi: 10.3390/math9141675
    [17] I. Jadlovská, T. X. Li, A note on the oscillation of third-order delay differential equations, Appl. Math. Lett., 167 (2025), 109555. https://doi.org/10.1016/j.aml.2025.109555 doi: 10.1016/j.aml.2025.109555
    [18] S. R. Grace, I. Jadlovská, A. Zafer, On oscillation of third-order noncanonical delay differential equations, Appl. Math. Comput., 362 (2019), 124530. https://doi.org/10.1016/j.amc.2019.06.044 doi: 10.1016/j.amc.2019.06.044
    [19] F. Masood, C. Cesarano, O. Moaaz, S. S. Askar, A. M. Alshamrani, H. El-Metwally, Kneser-type oscillation criteria for half-linear delay differential equations of third order, Symmetry, 15 (2023), 1994. https://doi.org/10.3390/sym15111994 doi: 10.3390/sym15111994
    [20] G. E. Chatzarakis, S. R. Grace, I. Jadlovská, T. X. Li, E. Tunç, Oscillation criteria for third-order Emden-Fowler differential equations with unbounded neutral coefficients, Complexity, 2019 (2019), 5691758. https://doi.org/10.1155/2019/5691758 doi: 10.1155/2019/5691758
    [21] J. Džurina, S. R. Grace, I. Jadlovská, On nonexistence of Kneser solutions of third-order neutral delay differential equations, Appl. Math. Lett., 88 (2019), 193–200. https://doi.org/10.1016/j.aml.2018.08.016 doi: 10.1016/j.aml.2018.08.016
    [22] G. Nithyakala, G. E. Chatzarakis, G. Ayyappan, E. Thandapani, Third-order noncanonical neutral delay differential equations: nonexistence of Kneser solutions via Myshkis type criteria, Mathematics, 12 (2024), 2847. https://doi.org/10.3390/math12182847 doi: 10.3390/math12182847
    [23] G. Purushothaman, K. Suresh, E. Thandapani, E. Tunc, Existence and bounds for Kneser-type solutions to noncanonical third-order neutral differential equations, Electron. J. Differ. Equ., 2024 (2024), 1–13. https://doi.org/10.58997/ejde.2024.55 doi: 10.58997/ejde.2024.55
    [24] B. Almarri, B. Batiha, O. Bazighifan, F. Masood, Third-order neutral differential equations with non-canonical forms: novel oscillation theorems, Axioms, 13 (2024), 755. https://doi.org/10.3390/axioms13110755 doi: 10.3390/axioms13110755
    [25] F. Masood, B. Batiha, O. Bazighifan, Asymptotic and oscillatory characteristics of solutions of neutral differential equations, J. Math. Comput. Sci., 39 (2025), 418–436. https://doi.org/10.22436/jmcs.039.04.02 doi: 10.22436/jmcs.039.04.02
    [26] J. R. Graef, S. R. Grace, G. N. Chhatria, New oscillation criteria for third order nonlinear functional differential equations, Electron. J. Qual. Theory Differ. Equ., 2024 (2024), 1–11. https://doi.org/10.14232/ejqtde.2024.1.70 doi: 10.14232/ejqtde.2024.1.70
    [27] S. R. Grace, I. Jadlovská, G. N. Chhatria, Oscillation criteria for general third-order delay dynamic equations, Qual. Theory Dyn. Syst., 24 (2025), 1–16. https://doi.org/10.1007/s12346-025-01259-1 doi: 10.1007/s12346-025-01259-1
    [28] J. Džurina, Comparison theorems for nonlinear ODE's, Math. Slovaca, 42 (1992), 299–315.
    [29] G. Chatzarakis, S. Grace, Third-order nonlinear differential equations with nonlinear neutral terms, Funct. Differ. Equ., 27 (2020), 3–13.
    [30] C. H. Zhang, R. P. Agarwal, M. Bohner, T. X. Li, New results for oscillatory behavior of even-order half-linear delay differential equations, Appl. Math. Lett., 26 (2013), 179–183. https://doi.org/10.1016/j.aml.2012.08.004 doi: 10.1016/j.aml.2012.08.004
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(317) PDF downloads(39) Cited by(0)

Article outline

Figures and Tables

Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog