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1. Introduction

This study investigates the oscillatory nature of all solutions to a general class of third-order
nonlinear neutral differential equations, defined as(

a2 (s)
[(
a1 (s)

(
Z′ (s)

)α1
)′]α2

)′
+ q(s)xβ (κ (s)) = 0, s ≥ s0, (1.1)

whereZ (s) := x (s) + p (s) x (τ (s)). Throughout the paper, we will always assume that

(H1) α1, α2, and β are quotients of positive odd integers;
(H2) τ, κ ∈ C1([s0,∞),R), with τ(s) ≥ s, κ (s) ≤ s, κ′(s) ≥ 0, and lims→∞ τ (s) = lims→∞ κ (s) = ∞;
(H3) a1, a2, q ∈ C1 ([s0,∞) ,R+), with q (s) , 0 and p ∈ C ([s0,∞) ,R+), 0 < p (s) ≤ p0 < 1. Moreover,∫ ∞

s0

1

a
1/α1
1 (ω)

dω = ∞, and
∫ ∞

s0

1

a
1/α2
2 (ω)

dω = ∞. (1.2)

By a solution of Eq (1.1), we mean a function x (s) which is continuous on [sx,∞) and satisfies (1.1)
on [sx,∞) for sx ⩾ s0. We consider only those solution x (s) of (1.1) which satisfy

sup{|x(s)| : s ⩾ S} > 0, for all S ≥ sx.

In addition, we implicitly assume that Eq (1.1) has solutions. A solution x (s) to Eq (1.1) is said to
be oscillatory if it possesses a sufficiently large number of zeros on the interval [sx,∞); that is, for
any s1 ∈ [sx,∞) there exists s2 ≥ s1 such that x (s2) = 0. Otherwise, the solution is considered
nonoscillatory, meaning that it eventually remains either positive or negative. Extending this concept
to the equation itself, Eq (1.1) is said to be oscillatory if all of its solutions are oscillatory; otherwise,
it is considered non-oscillatory.

In dynamical models, delay and oscillation scenarios are often formulated by means of external
sources and/or nonlinear diffusion, perturbing the natural evolution of related systems. In recent years,
the theory of oscillation in functional differential equations has received increasing attention due to
its wide applications in engineering and natural sciences. For foundational and recent contributions
addressing oscillatory behavior in various classes of such equations, we refer the reader to all references
cited throughout this paper, in particular to [1–3].

Neutral differential equations are prominent mathematical models characterized by their special
structure, in which the higher-order derivative of the unknown function depends not only on the
current variable s, but also on delayed or advanced arguments. This property provides great flexibility
in modeling complex phenomena that are difficult to represent with conventional differential
equations. They have been applied to networks with lossless transmission lines [4, 5], mechanical
oscillations of connected masses, and other areas such as electrical circuits, population dynamics, and
stability analysis, reflecting their broad importance in applied mathematics, natural sciences, and
engineering [6].

The problem of oscillation of solutions to differential equations has been extensively studied
since Sturm’s pioneering work on second-order linear differential equations. Over the past three
decades, oscillation theory has advanced significantly for second-order neutral delay differential
equations; see Li et al. [7], Tamilvanan et al. [8], Džurina et al. [9], Alrashdi et al. [10], and
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Aljawi et al. [11]. Third-order neutral delay differential equations have also received attention, with
several new results; see [12–14]. Compared to second-order equations, research on third-order cases
remains limited, highlighting a clear research gap.

Below, we review key studies on the oscillatory behavior and Kneser-type solutions of third-order
differential equations, which have contributed to the development of precise criteria and modern
analytical methods. For instance, Saker [15] examined the oscillatory behavior of a nonlinear delay
differential equation of the form(

a2 (s)
(
a1 (s) x′(s)

)′)′
+ q(s) f (x (s − τ)) = 0, s ≥ s0,

in the typical case, and established criteria ensuring that every solution of this equation is oscillatory
by employing Riccati transformation techniques.

Later, Jadlovská et al. [16] and Jadlovská and Li [17] formulated effective oscillation criteria for
third-order delay differential equations of the form(

a2 (s)
(
a1 (s) x′(s)

)′)′
+ q(s)x (τ (s)) = 0 (1.3)

in the canonical case characterized by the two conditions∫ ∞

s0

1
a1 (ω)

dω = ∞ and
∫ ∞

s0

1
a2 (ω)

dω = ∞. (1.4)

In contrast, Grace et al. [18] developed new oscillation criteria for the same class of equations in the
noncanonical framework, characterized by∫ ∞

s0

1
a1 (ω)

dω < ∞ and
∫ ∞

s0

1
a2 (ω)

dω < ∞. (1.5)

Extending the results of [16], Masood et al. [19] considered quasilinear third-order delay differential
equations of the type (

a2 (s)
((
a1 (s) x′(s)

)′)α2
)′
+ q(s)xα2 (τ (s)) = 0,

and established new oscillation results under the assumptions∫ ∞

s0

1
a1 (ω)

dω = ∞ and
∫ ∞

s0

1

a
1/α2
2 (ω)

dω = ∞,

where the results were obtained using an efficient iterative approach.
Similarly, Chatzarakis et al. [20] introduced criteria aimed at studying the oscillatory behavior of

third-order neutral delay equations, such as

Z′′′ (s) + q (s) xβ (κ (s)) = 0,

and provided sharp conditions ensuring the nonexistence of Kneser-type solutions, thereby pushing the
boundaries of oscillation theory for neutral differential equations.

Furthermore, Džurina et al. [21] established sufficient conditions for the absence of Kneser solutions
in third-order neutral delay differential equations of the form(

a2 (s)
(
a1 (s)Z′ (s)

)′)′
+ q (s) x (κ (s)) = 0. (1.6)
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By combining their recently acquired findings with pre-existing research, they achieved oscillation for
all solutions of equations.

On the other hand, Nithyakala et al. [22] studied the nonexistence of Kneser-type solutions in
noncanonical settings using Myshkis-type criteria. More recently, Purushothaman et al. [23]
examined the existence and bounds of Kneser-type solutions for the noncanonical case of Eq (1.6)
with κ (s) = s. In related studies, Almarri et al. [24] and Masood et al. [25] analyzed the oscillatory
properties of Eq (1.6) using a substitution procedure that transformed it into an oscillatory form,
followed by an iterative method to extract the results.

Finally, Graef et al. [26] established oscillation criteria for Eq (1.1) in the special case p (s) =
0, using comparison techniques with first-order delay differential equations. Subsequently, the same
equation was studied by Grace et al. [27] within the framework of delay dynamic equations, where they
obtained a class of oscillation results that are regarded as foundational contributions in the literature.

Based on the previous studies and the results presented in Graef et al. [26] and Grace et al. [27],
Eq (1.1) introduced in this paper is a novel extension of the equations discussed in the literature.
This work aims to establish new sufficient conditions that guarantee the oscillation of all solutions to
Eq (1.1). The results further contribute to expanding the scope of prior research by addressing some
special cases not considered in earlier studies. Given the complexity of the studied equation, these
findings can be generalized to broader classes of differential equations, including sublinear or higher-
order nonlinear differential equations, thereby highlighting the novelty and potential applicability of
the proposed approach.

Remark 1.1. The results established in this study provide a unified framework that significantly extends
several earlier contributions, each of which emerges as a special case of Eq (1.1) under more restrictive
assumptions on the parameters and coefficient functions. For clarity, these particular cases from the
literature are summarized in Table 1.

Table 1. Special cases of Eq (1.1) considered in previous studies.

Case References Conditions
1 [15, 16, 18] α1 = α2 = β = 1, p(s) = 0
2 [19] α1 = 1, α2 = β, p(s) = 0
3 [20] α1 = α2 = 1, a1(s) = a2(s) = 1
4 [21, 22, 25] α1 = α2 = β = 1
5 [26] p(s) = 0

Remark 1.2. In what follows, all functional inequalities are assumed to hold for sufficiently large s.
Without loss of generality, we restrict our attention to positive solutions of (1.1), because the existence
of x (s) automatically implies that −x (s) is also a solution.

Remark 1.3. In the sequel, we assume s ≥ s2 ≥ s1, where s2 is sufficiently large. Consequently,
s ∈ [s2,∞) ⊆ [s1,∞).

The rest of this paper is organized as follows: Section 2 provides the basic notations and
introductory lemmas necessary for the main results. In Section 3, we present theorems containing
necessary and sufficient criteria for the oscillation of all solutions (1.1). Section 4 provides illustrative
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numerical examples of the application of the theoretical results, while Section 5 concludes with a
summary of the main results, concluding remarks, and suggestions for future research.

2. Preliminary results

In this section, we introduce the notations that will be employed in the subsequent analysis. We
begin with the following notation:

π (s, s0) :=
∫ s

s0

1

a
1/α2
2 (ω)

dω, π∗ (s, s0) :=
∫ s

s0

(
π (ω, s0)
a1 (ω)

)1/α1

dω

and

q̂(s) = q(s)
(
1 − p (κ (s))

π∗ (τ (κ (s)) , s1)
π∗ (κ (s) , s1)

)β
.

Remark 2.1. For any solution x of (1.1), we denote by

L1 (Z (s)) =
(
Z′ (s)

)α1 and L2 (Z (s)) =
(
a1 (s) (L1 (Z (s)))′

)α2

on [s0,∞). Then, Eq (1.1) can be rewritten as

(a2 (s) L2 (Z (s)))′ + q(s)xβ (κ (s)) = 0. (2.1)

To establish our main results, we make use of the following lemmas, the first of which is well
known.

Lemma 2.1. [28] Let q ∈ ([s0,∞) ,R+), κ ∈ ([s0,∞) ,R) be continuous functions, and f ∈ (R,R) be a
nondecreasing continuous function. Moreover, x f (x) > 0, ∀x , 0 and κ (s) ≤ s with lims→∞ κ (s) = ∞.
If the first-order delay differential inequality

Z′ (s) + q (s) f (Z (κ (s))) ≤ 0, s ≥ s0 ≥ 0

has an eventually positive solution, then the first-order delay differential equation

Z′ (s) + q (s) f (Z (κ (s))) = 0, s ≥ s0 ≥ 0

has an eventually positive solution.

The following lemma presents fundamental properties of positive (nonoscillatory) solutions of
Eq (1.1), and represents a generalization of a classical result originally due to Kiguradze (see,
e.g., [29]).

Lemma 2.2. Assume that x (s) is a positive solution of (1.1) and its corresponding functionZ (s). Then
either

Z (s) ∈ N0 ⇔ L1 (Z (s)) < 0, L2 (Z (s)) > 0, (a2 (s) L2 (Z (s)))′ < 0,

or
Z (s) ∈ N2 ⇔ L1 (Z (s)) > 0, L2 (Z (s)) > 0, (a2 (s) L2 (Z (s)))′ < 0,

eventually.
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We now establish sufficient conditions guaranteeing the nonexistence of N0-type solutions. In the
subsequent analysis, we assume the existence of a nondecreasing function ϱ (s) ∈ C ([s0,∞) ,R)
satisfying

ϱ (s) ≥ s, ϱ (κ (s)) ≥ κ (s) , and ϱ (ϱ (κ (s))) ≤ s. (2.2)

Moreover, we define

π̃∗ (ϱ (s) , s) :=
∫ ϱ(s)

s

(
π (ϱ (ω) , ω)
a1 (ω)

)1/α1

dω.

The following lemma provides some fundamental monotonicity properties of positive solutions
of (1.1).

Lemma 2.3. Let x (s) be a positive solution of (1.1) with the corresponding functionZ ∈ N2. Then
(i) a1(s)L1(Z(s))

π(s,s1) is decreasing;
(ii) Z(s)

π∗(s,s1) is decreasing;
(iii) (a2 (s) (L2Z (s)))′ + q̂(s)Zβ (κ (s)) ≤ 0.

Proof. Let x (s) be a positive solution of (1.1) with the corresponding functionZ ∈ N2 for s ≥ s1.
(i) Because a2 (s)

[(
a1 (s) (Z′ (s))α1

)′]α2
is decreasing, we have

a1 (s)
(
Z′ (s)

)α1 ≥

∫ s

s1

a
1/α2
2 (ω)

(
a1 (ω)

(
Z′ (ω)

)α1
)′ 1

a
1/α2
2 (ω)

dω

=

∫ s

s1

a
1/α2
2 (ω) L1/α2

2 (Z (ω))
1

a
1/α2
2 (ω)

dω

≥ a
1/α2
2 (s) L1/α2

2 (Z (s))
∫ s

s1

1

a
1/α2
2 (ω)

dω

= a
1/α2
2 (s) L1/α2

2 (Z (s)) π (s, s1) .

Then
a

1/α2
2 (s) L1/α2

2 (Z (s)) π (s, s1) − a1 (s) L1 (Z (s)) ≤ 0.

Therefore, (
a1 (s) L1 (Z (s))

π (s, s1)

)′
=

L1/α2
2 (Z (s)) π (s, s1) − a1 (s) L1 (Z (s)) 1

a
1/α2
2 (s)

π2 (s, s1)
≤ 0.

Thus, a1(s)L1(Z(s))
π(s,s1) is decreasing.

(ii) Because a1(s)L1(Z(s))
π(s,s1) is decreasing, this fact yields

Z (s) ≥
∫ s

s1

a
1/α1
1 (ω) π1/α1 (ω, s1)Z′ (ω)

a
1/α1
1 (ω) π1/α1 (ω, s1)

dω =
∫ s

s1

a
1/α1
1 (ω) π1/α1 (ω, s1) L1/α1

1 (Z (ω))

a
1/α1
1 (ω) π1/α1 (ω, s1)

dω

≥
a

1/α1
1 (s) L1/α1

1 (Z (s))
π1/α1 (s, s1)

∫ s

s1

(
π (ω, s1)
a1 (ω)

)1/α1

dω

=
a

1/α1
1 (s) L1/α1

1 (Z (s))
π1/α1 (s, s1)

π∗ (s, s1) .
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Hence, (
Z (s)
π∗ (s, s1)

)′
=
π∗ (s, s1) L1/α1

1 (Z (s)) −Z (s)
(
π(s,s1)
a1(s)

)1/α1

[π∗ (s, s1)]2 ≤ 0,

which implies that Z(s)
π∗(s,s1) is decreasing.

(iii) By using the definition ofZ, we haveZ (s) ≥ x (s) and

x (s) = Z (s) − p (s) x (τ (s)) ≥ Z (s) − p (s)Z (τ (s)) . (2.3)

Because Z(s)
π∗(s,s1) is decreasing and τ (s) ≥ s, we obtain

Z (τ (s)) ≤
π∗ (τ (s) , s1)
π∗ (s, s1)

Z (s) .

By using the above inequality in (2.3), we deduce that

x (s) = Z (s) − p (s) x (τ (s)) ≥
(
1 − p (s)

π∗ (τ (s) , s1)
π∗ (s, s1)

)
Z (s) .

Now, from (2.1), we get

(a2 (s) (L2Z (s)))′ ≤ −q(s)xβ (κ (s))

≤ −q(s)
(
1 − p (κ (s))

π∗ (τ (κ (s)) , s1)
π∗ (κ (s) , s1)

)β
Zβ (κ (s))

= −q̂(s)Zβ (κ (s)) .

3. Main results

In this section, we review a number of theorems that include sufficient criteria to ensure that all
solutions of (1.1) are oscillatory.

Theorem 3.1. Assume that the following first-order delay differential equations

ω′ (s) +
(
1 − p0

)β q(s)
[̃
π∗ (ϱ (κ (s)) , κ (s))

]β ω β
α1α2 (ϱ (ϱ (κ (s)))) = 0 (3.1)

and

ω′1 (s) + q̂(s) [π∗ (κ (s) , s1)]β ω
β

α1α2
1 (κ (s)) = 0 (3.2)

are both oscillatory. Then Eq (1.1) is oscillatory.

Proof. We proceed by contradiction. Assume that Eq (1.1) has an eventually positive solution, that is,
there exists a solution x (s) such that x (s) > 0 for all s ≥ s0, where s0 is a sufficiently large value. By
Lemma 2.2, it follows that the behavior of Z and its derivatives must fall into one of the two possible
cases, N0 or N2. We will consider each case and demonstrate that both lead to a contradiction.
Case 1: Assume thatZ (s) ∈ N0 for all s ≥ s1, where s1 ≥ s0 is sufficiently large. BecauseZ (s) ≥ x (s),
we have

x (s) = Z (s) − p (s) x (τ (s)) ≥ Z (s) − p (s)Z (τ (s)) ≥
(
1 − p0

)
Z (s) .
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Substituting this inequality into Eq (2.1) gives

(a2 (s) (L2Z (s)))′ = −q(s)xβ (κ (s)) ≤ −
(
1 − p0

)β q(s)Zβ (κ (s)) . (3.3)

Indeed, we note that

a1 (ϱ (s)) L1 (Z (ϱ (s))) − a1 (s) L1 (Z (s)) =
∫ ϱ(s)

s
(a1 (ω) L1 (Z (ω)))′ dω

=

∫ ϱ(s)

s

a
1
α2
2 (ω) L

1
α2
2 (Z (ω))

a
1
α2
2 (ω)

dω.

Using the fact that L2 (Z (s)) is decreasing, we find

−a1 (s)
(
Z′ (s)

)α1 ≥ π (ϱ (s) , s) a
1
α2
2 (ϱ (s)) L

1
α2
2 (Z (ϱ (s))) .

This inequality implies

−Z′ (s) ≥
(
π (ϱ (s) , s)
a1 (s)

) 1
α1

(a2 (ϱ (s)) L2 (Z (ϱ (s))))
1

α1α2 .

Integrating from s to ϱ (s) yields

−Z (ϱ (s)) +Z (s) ≥ (a2 (ϱ (ϱ (s))) L2 (Z (ϱ (ϱ (s)))))
1

α1α2

∫ ϱ(s)

s

(
π (ϱ (ω) , ω)
a1 (ω)

) 1
α1

dω.

Consequently,
Z (s) ≥ π̃∗ (ϱ (s) , s) (a2 (ϱ (ϱ (s))) L2 (Z (ϱ (ϱ (s)))))

1
α1α2 . (3.4)

Substituting (3.4) into (3.3) gives

− (a2 (s) L2 (Z (s)))′ ≥
(
1 − p0

)β q(s)
[̃
π∗ (ϱ (κ (s)) , κ (s)) (a2 (ϱ (ϱ (κ (s)))) L2 (Z (ϱ (ϱ (κ (s))))))

1
α1α2

]β
.

Defining ω (s) := a2 (s) L2 (Z (s)), we get

ω′ (s) +
(
1 − p0

)β q(s)
[̃
π∗ (ϱ (κ (s)) , κ (s))

]β [ω (ϱ (ϱ (κ (s))))
] β
α1α2 ≤ 0. (3.5)

By Lemma 2.1, the corresponding equation (3.1) has a positive solution with ω (s) → ∞ as s → ∞,
which contradicts our assumption.
Case 2: Assume thatZ (s) ∈ N2 for all s ≥ s1, where s1 ≥ s0 is sufficiently large. Because L2 (Z (s)) is
decreasing, we have

a1 (s) L1 (Z (s)) ≥
∫ s

s1

(a1 (ω) L1 (Z (ω)))′ dω

=

∫ s

s1

a
1/α2
2 (ω) L1/α2

2 (Z (ω))

a
1/α2
2 (ω)

dω
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≥ a
1/α2
2 (s) L1/α2

2 (Z (s))
∫ s

s1

1

a
1/α2
2 (ω)

dω

= π (s, s1) (a2 (s) L2 (Z (s)))1/α2 .

Equivalently,

Z′ (s) ≥
(
π (s, s1)
a1 (s)

)1/α1

(a2 (s) L2 (Z (s)))
1

α1α2 . (3.6)

Integrating from s1 to s yields

Z (s) ≥ (a2 (s) L2 (Z (s)))
1

α1α2

∫ s

s1

(
π (ω, s1)
a1 (ω)

)1/α1

dω = π∗ (s, s1) (a2 (s) L2 (Z (s)))
1

α1α2 . (3.7)

Using (3.7) in Lemma 2.3(iii), we obtain

− (a2 (s) L2 (Z (s)))′ ≥ q̂(s)Zβ (κ (s)) ≥ q̂(s) [π∗ (κ (s) , s1)]β [a2 (κ (s)) L2 (Z (κ (s)))]
β

α1α2 .

Defining ω1 (s) = a2 (s) L2 (Z (s)), we get

ω′1 (s) + q̂(s) [π∗ (κ (s) , s1)]β ω
β

α1α2
1 (κ (s)) ≤ 0. (3.8)

By Lemma 2.1, the corresponding equation (3.2) has a positive solution with ω1 (s) → ∞ as s → ∞,
which is impossible.

Because both cases lead to contradictions, the initial assumption is false, completing the proof.

Theorem 3.2. Let β = α1α2. If there exists a nondecreasing function ρ ∈ C1 ([s0,∞) ,R+) such that

lim sup
s→∞

∫ s

κ(s)
q(ω) (̃π∗ (κ (s) , κ (ω)))β dω ≥

1(
1 − p0

)β (3.9)

and

lim sup
s→∞

∫ s

s1

ρ (ω) q̂ (ω) −
1

(1 + α1α2)1+α1α2

[
ρ′ (ω)

]1+α1α2[
ρ (ω) κ′ (ω)

]α1α2

(
π (κ (ω) , s1)
a1 (κ (ω))

)−α2
 dω = ∞ (3.10)

hold, then Eq (1.1) is oscillatory.

Proof. We proceed by contradiction. Assume that Eq (1.1) has an eventually positive solution, that is,
there exists a solution x (s) such that x (s) > 0 for all s ≥ s0, where s0 is a sufficiently large value. By
Lemma 2.2, it follows that the behavior of Z and its derivatives must fall into one of the two possible
cases, N0 or N2. We will consider each case and demonstrate that both lead to a contradiction.
Case 1: Assume thatZ (s) ∈ N0 for all s ≥ s1, where s1 ≥ s0 is sufficiently large. Clearly, for s ≥ l ≥ s1,

a1 (s) L1 (Z (s)) − a1 (l) L1 (Z (l)) =
∫ s

l
(a1 (ω) L1 (Z (ω)))′ dω

=

∫ s

l

a
1/α2
2 (ω) L1/α2

2 (Z (ω))

a
1/α2
2 (ω)

dω
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≥ a
1/α2
2 (s) L1/α2

2 (Z (s))
∫ s

l

1

a
1/α2
2 (ω)

dω

= π (s, l) a1/α2
2 (s) L1/α2

2 (Z (s)) ,

that is,
−a1 (l) L1 (Z (l)) ≥ π (s, l) a1/α2

2 (s) L1/α2
2 (Z (s)) .

Then, clearly,
−a1 (l)

(
Z′ (l)

)α1 ≥ π (s, l) (a2 (s) L2 (Z (s)))1/α2 ,

or

−Z′ (l) ≥
(
π (s, l)
a1 (l)

)1/α1

(a2 (s) L2 (Z (s)))
1

α1α2 ,

which by integrating from l to s gives

Z (l) −Z (s) ≥ (a2 (s) L2 (Z (s)))
1

α1α2

∫ s

l

(
π (s, ω)
a1 (ω)

)1/α1

dω,

that is,
Z (l) ≥ (a2 (s) L2 (Z (s)))

1
α1α2 π̃∗ (s, l) .

Now, for s ≥ ω > s2 for some s2 > s1, setting l = κ (ω) and s = κ (s) in the preceding inequality, we get

Z (κ (ω)) ≥ (a2 (κ (s)) L2 (Z (κ (s))))
1

α1α2 π̃∗ (κ (s) , κ (ω)) . (3.11)

Integrating inequality (3.3) from κ (s) to s and then applying (3.11), we get

a2 (κ (s)) L2 (Z (κ (s))) ≥
∫ s

κ(s)

(
1 − p0

)β q(ω)Zβ (κ (ω)) dω

≥

∫ s

κ(s)

(
1 − p0

)β q(ω) (̃π∗ (κ (s) , κ (ω)))β (a2 (κ (s)) L2 (Z (κ (s))))
β

α1α2 dω

≥ (a2 (κ (s)) L2 (Z (κ (s))))
β

α1α2

∫ s

κ(s)

(
1 − p0

)β q(ω) (̃π∗ (κ (s) , κ (ω)))β dω.

Because β = α1α2, we have β

α1α2
= 1, and thus it follows that∫ s

κ(s)
q(ω) (̃π∗ (κ (s) , κ (ω)))β dω ≤

1(
1 − p0

)β ,
a contradiction to (3.9).
Case 2: Assume thatZ (s) ∈ N2 for all s ≥ s1, where s1 ≥ s0 is sufficiently large. Define

ψ (s) := ρ (s)
a2 (s) L2 (Z (s))
Zβ (κ (s))

> 0. (3.12)

Now,

ψ′ (s) = ρ′ (s)
a2 (s) L2 (Z (s))
Zβ (κ (s))

+ ρ (s)
(a2 (s) L2 (Z (s)))′

Zβ (κ (s))
− β

ρ (s) a2 (s) L2 (Z (s)) · Z′ (κ (s)) · κ′ (s)
Z1+β (κ (s))
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≤
ρ′ (s)
ρ (s)

ψ (s) − ρ (s) q̂(s) − βκ′ (s)
Z′ (κ (s))
Z (κ (s))

ψ (s) .

By using (3.6), we have

ψ′ (s) ≤ −ρ (s) q̂(s) +
ρ′ (s)
ρ (s)

ψ (s) − βκ′ (s)

(
π(κ(s),s1)
a1(κ(s))

)1/α1
(a2 (κ (s)) L2 (Z (κ (s))))

1
α1α2

Z (κ (s))
ψ (s) .

By using the decreasing nature of a2 (s) L2 (Z (s)) and the increasing nature ofZ (s), we get

ψ′ (s) ≤ −ρ (s) q̂ (s) +
ρ′ (s)
ρ (s)

ψ (s) − βκ′ (s)
(
π (κ (s) , s1)
a1 (κ (s))

) 1
α1 [a2 (s) L2 (Z (s))]

1
α1α2

Z (κ (s))
ψ (s)

= −ρ (s) q̂ (s) +
ρ′ (s)
ρ (s)

ψ (s) −
βκ′ (s)

ρ
1

α1α2 (s)

(
π (κ (s) , s1)
a1 (κ (s))

) 1
α1

ψ
1+ 1

α1α2 (s) .

By using the inequality [30]

By − Ay(α+1)/α ≤
αα

(α + 1)α+1

Bα+1

Aα
, A > 0,

where

α = α1α2, B =
ρ′ (s)
ρ (s)

, A =
βκ′ (s)

ρ
1

α1α2 (s)

(
π (κ (s) , s1)
a1 (κ (s))

) 1
α1

, and y (s) = ψ (s) ,

we have

ψ′ (s) ≤ −ρ (s) q̂ (s) +
1

(α1α2 + 1)α1α2+1

[
ρ′ (s)

]1+α1α2[
ρ (s) κ′ (s)

]α1α2

(
π (κ (s) , s1)
a1 (κ (s))

)−α2

.

Integrating the preceding inequality from s1 to s, we get∫ s

s1

ρ (ω) q̂ (ω) −
1

(α1α2 + 1)α1α2+1

[
ρ′ (ω)

]1+α1α2[
ρ (ω) κ′ (ω)

]α1α2

(
π (κ (ω) , s1)
a1 (κ (ω))

)−α2
 dω ≤ ψ (s1) .

This leads to a contradiction with condition (3.10) as s→ ∞, thus concluding the proof.

Theorem 3.3. Let β = α1α2. Suppose that condition (3.9) is satisfied. Then, the oscillatory nature of
the first-order delay differential equation (3.2) ensures the oscillation of Eq (1.1).

Proof. The proof follows immediately by combining condition (3.2) of Theorem 3.1 with
condition (3.9) in Theorem 3.2.

Theorem 3.4. Let β = α1α2. Suppose that there exists a nondecreasing function ρ ∈ C1 ([s0,∞) ,R+)
such that (3.10) is satisfied. Then, the oscillatory nature of the first-order delay differential
equation (3.1) ensures the oscillation of Eq (1.1).

Proof. The proof follows immediately by combining condition (3.1) of Theorem 3.1 with
condition (3.10) of Theorem 3.2.
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Theorem 3.5. Let β ≤ α1α2. Assume there exists a nondecreasing function ϱ (s) ∈ C ([s0,∞) ,R) such
that (2.2) holds. If

lim
s→∞

∫ s

s0

q(ω)
[̃
π∗ (ϱ (κ (ω)) , κ (ω))

]β dω = ∞ (3.13)

and

lim
s→∞

∫ s

s0

q̂(ω) [π∗ (κ (ω) , s1)]β dω = ∞, (3.14)

then Eq (1.1) is oscillatory.

Proof. We proceed by contradiction. Assume that Eq (1.1) has an eventually positive solution, that is,
there exists a solution x (s) such that x (s) > 0 for all s ≥ s0, where s0 is a sufficiently large value. By
Lemma 2.2, it follows that the behavior of Z and its derivatives must fall into one of the two possible
cases, N0 or N2. We will consider each case and demonstrate that both lead to a contradiction.
Case 1: Assume thatZ (s) ∈ N0 for all s ≥ s1, where s1 ≥ s0 is sufficiently large. Proceeding as in the
proof of Theorem 3.1, we get the inequality (3.5) for s ≥ s2. Upon using the fact that ϱ (ϱ (κ (s))) ≤ s
and ω (s) := a2 (s) (L2Z (s)) is positive and nonincreasing, we have ω (ϱ (ϱ (κ (s)))) ≥ ω (s). Thus,
inequality (3.5) takes the form

ω′ (s) +
(
1 − p0

)β q(s)
[̃
π∗ (ϱ (κ (s)) , κ (s))

]β [ω (s)]
β

α1α2 ≤ 0,

that is,

(
1 − p0

)β q(s)
[̃
π∗ (ϱ (κ (s)) , κ (s))

]β
≤ −

ω′ (s)

ω
β

α1α2 (s)
= −

(
ω

1− β
α1α2 (s)

)′
1 − β

α1α2

, β ≤ α1α2.

Integrating the preceding inequality from s2 to s, we get∫ s

s2

(
1 − p0

)β q(ω)
[̃
π∗ (ϱ (κ (ω)) , κ (ω))

]β dω ≤
ω

1− β
α1α2 (s2)

1 − β

α1α2

−
ω

1− β
α1α2 (s)

1 − β

α1α2

≤
1

1 − β

α1α2

ω
1− β

α1α2 (s2) ,

a contradiction to (3.13) as s→ ∞.
Case 2: Assume thatZ (s) ∈ N2 for all s ≥ s1, where s1 ≥ s0 is sufficiently large. Proceeding as in the
proof of condition (3.2) in Theorem 3.1, we get the inequality (3.8) for s ≥ s2. Upon using the fact that
κ (s) ≤ s and ω1 (s) = a2 (s) L2 (Z (s)) is positive and nonincreasing, we have ω1 (κ (s)) ≥ ω1 (s). Thus,
inequality (3.8) takes the form

ω′1 (s) + q̂(s) [π∗ (κ (s) , s1)]β ω
β

α1α2
1 (s) ≤ 0,

that is,

q̂(s) [π∗ (κ (s) , s1)]β ≤ −
ω′1 (s)

ω
β

α1α2
1

= −

(
ω

1− β
α1α2

1

)′
1 − β

α1α2

, β ≤ α1α2.

Integrating the preceding inequality from s2 to s, we get∫ s

s2

q̂(ω) [π∗ (κ (ω) , s1)]β dω ≤
ω

1− β
α1α2

1 (s2)

1 − β

α1α2

−
ω

1− β
α1α2

1 (s)

1 − β

α1α2

≤
1

1 − β

α1α2

ω
1− β

α1α2 (s2) ,

a contradiction to (3.14) as s→ ∞. The proof is complete.
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Theorem 3.6. Let β < α1α2. Suppose that (3.14) is satisfied. Then, the oscillatory nature of the
first-order delay differential equation (3.1) ensures the oscillation of Eq (1.1).

Proof. The proof follows immediately by combining condition (3.1) of Theorem 3.1 with
condition (3.14) of Theorem 3.5.

Theorem 3.7. Let β < α1α2. Suppose that (3.13) is satisfied. Then, the oscillatory nature of the
first-order delay differential equation (3.2) ensures the oscillation of Eq (1.1).

Proof. The proof follows immediately by combining condition (3.2) of Theorem 3.1 with
condition (3.13) of Theorem 3.5.

4. Examples

In this section, we present some examples that support and illustrate our results.

Example 4.1. Consider the third-order neutral differential equations
[(x (s) +

1
2

x (2s)
)′]1/3′3

′

+
9
s3 x3

(
1
3

s
)
= 0, s ≥ 1, (4.1)

where α1 =
1
3 , α2 = 3, β = 3, a1 (s) = 1, a2 (s) = s, p (s) = 1

16 , q (s) = 9
s3 , τ (s) = 2s, and κ (s) = 1

3s. Then
assumptions (H1)–(H3) hold, and ∫ ∞

s0

1

a
1/α1
1 (ω)

dω =
∫ ∞

1
1dω = ∞,

∫ ∞

s0

1

a
1/α2
2 (ω)

dω =
∫ ∞

1
ω−1/3dω = ∞.

Moreover,

π (s, 1) =
∫ s

1
ω−1/3dω =

3
2

(
s2/3 − 1

)
,

and

π∗ (s, 1) =
27
8

∫ s

1

(
ω2/3 − 1

)3
dω =

9
8

s3 −
243
56

s7/3 +
243
40

s5/3 −
27
8

s +
18
35
.

Hence, π∗
(

2s
3 , 1

)
and π∗

(
s
3 , 1

)
are obtained by substituting s 7→ s

6 and s 7→ s
3 . For large s, one has

π∗ (s, 1) ∼ 9
8s3, which yields

π∗
(

2s
3 , 1

)
π∗

(
s
3 , 1

) ∼ 8,

and therefore,

q̂(s) =
9
s3

1 − 1
16

π∗
(

2
3s, 1

)
π∗

(
1
3s, 1

)
3

∼
1.125

s3 .
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With ϱ (s) = 3
2s

(
so, ϱ (κ (s)) = s

2 , ϱ (ϱ (κ (s))) = 3
4s < s

)
, one obtains

π (ϱ (s) , s) =
∫ 3

2 s

s
ω−1/3dω =

3
2

s2/3

(3
2

)2/3

− 1
 = 0.46556s2/3.

Consequently,

π̃∗ (ϱ (s) , s) :=
∫ 3

2 s

s
(π (ϱ (ω) , ω))3 dω =

∫ 3
2 s

s

(
0.46556ω2/3

)3
dω ≃ 0.0799s3.

Similarly, one obtains
π̃∗ (ϱ (κ (s)) , κ (s)) ≃ 0.00296s3.

Therefore, (3.1) becomes

ω′ (s) + 1.92 × 10−7s6ω3
(
3
4

s
)
= 0. (4.2)

It is not difficult to see that (3.2) becomes

ω′1 (s) + 8.138 × 10−5s6ω3
1

(
1
3

s
)
= 0. (4.3)

Clearly, Lemma 2.1 guarantees that all solutions of Eqs (3.1) and (3.2) are oscillatory. Thus, by
Theorem 3.1, every solution of Eq (4.1) is oscillatory.

Note that the results in [19, 24, 25] are not applicable to Eq (4.1); thus, the findings of the present
study extend and improve upon these earlier works.

Example 4.2. Consider the third-order neutral differential equation(
1
s

(
1
s

(
x (s) +

1
2

x (2s)
)′)′)′

+
q0

s5 x
(
1
3

s
)
= 0, s ≥ 1, (4.4)

where q0 > 0. Clearly:

α1 = α2 = β = 1, a1 (s) =
1
s
, a2 (s) =

1
s
, p (s) =

1
25
, q (s) =

q0

s5 , τ (s) = 2s, and κ (s) =
1
3

s.

Hence, assumptions (H1)–(H3) and (1.2) are satisfied. Moreover, we obtain

π (s, l) =
∫ s

l

1

a
1/α2
2 (ω)

dω =
∫ s

l
ωdω =

1
2

(
s2 − l2

)
,

π∗ (s, 1) =
∫ s

s0

1
2

(
s3 − sl2

)
dω =

s4

8
−

s2

4
+

1
8
,

and

π̃∗ (κ (s) , κ (l)) =
∫ s

3

l
3

1
2

(
s2

9
ω − ω3

)
dω =

(
s2 − l2

)2

648
.
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Condition (3.9) then yields

lim sup
s→∞

∫ s

κ(s)
q(ω) (̃π∗ (κ (s) , κ (ω)))β dω = lim sup

s→∞

∫ s

s/2

q0

ω5

(
s2 − ω2

)2

648
dω =

q0

648

∫ s

s/2

(
s2 − ω2

)2

ω5 dω

≃ 0.00223 · q0,

which holds provided that

0.00223 · q0 >
1(

1 − 1
25

) =⇒ q0 > 467.1.

For sufficiently large s, we have

π∗ (s, 1) ∼
s4

8
,

π∗
(

2s
3 , 1

)
π∗

(
s
3 , 1

) ∼ 16.

Thus,

q̂ (s) =
q0

s5

1 − 1
25

π∗
(

2s
3 , 1

)
π∗

(
s
3 , 1

)  ≃ q0

s5

(
1 −

16
25

)
≃

9q0

25s5 .

For condition (3.10) with ρ (s) = s4, we obtain for sufficiently large s:

lim sup
s→∞

∫ s

1

ω4 9q0

25ω5 −
3
22

(
4ω3

)2

ω4

(
ω

3
·

1
2
·
ω2

9

)−1
 dω = lim sup

s→∞

∫ s

1

[
9q0

25
− 648

]
1
ω

dω = ∞,

which holds when
9q0

25
− 648 > 0 =⇒ q0 > 1800.

Therefore, by Theorems 3.1–3.3, every solution of (4.5) is oscillatory whenever q0 > 1800.

Example 4.3. Consider 1
s2

[(
1

15s2

(
x (s) +

1
180

x (3s)
)′)′]3′ + q0

s15 x3
(
1
2

s
)
= 0, (4.5)

where q0 > 0. We have

α1 = 1, α2 = β = 3, a1 (s) =
1

15s2 , a2 (s) =
1
s2 ,

p (s) =
1

350
, q (s) =

q0

s15 , τ (s) = 3s, and κ (s) =
1
2

s.

Then assumptions (H1)–(H3) and (1.2) are satisfied. Moreover, we have

π (s, l) =
∫ s

l

1

a
1/α2
2 (ω)

dω =
∫ s

l
ω2/3dω =

3
5

(
s5/3 − l5/3

)
.
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Next,

π∗ (s, 1) =
∫ s

s0

(
π (ω, s0)
a1 (ω)

)1/α1

dω =
∫ s

1

(
15ω2 ·

3
5

(
ω5/3 − 1

))
dω

= 9
∫ s

1

(
ω11/3 − ω2

)
dω =

27
14

s14/3 − 3s3 +
15
14
.

Similarly,

π̃∗ (κ (s) , κ (l)) = π̃∗
(

s
2
,

l
2

)
=

∫ s
2

l
2

45
5
ω2

(( s
2

)5/3
− ω5/3

)
dω

= 9
∫ s

2

l
2

(( s
2

)5/3
ω2 − ω11/3

)
dω

= 9
( s

2

)5/3
·

1
3

( s
2

)3
−

(
l
2

)3 − 3
14

( s
2

)14/3
−

(
l
2

)14/3
=

9
214/3

[
5

42
s14/3 −

1
3

s5/3l3 +
3

14
l14/3

]
.

So for large s,

π̃∗ (κ (s) , κ (l)) ∼
9

214/3 ·
5
42

s14/3.

Then the condition (3.9) gives

lim sup
s→∞

∫ s

κ(s)
q(ω) (̃π∗ (κ (s) , κ (ω)))β dω

= lim sup
s→∞

∫ s

s/2

q0

ω15

(
9

214/3 ·
5

42
s14/3

)3

dω

= q0
453

214 ·
1

423 lim sup
s→∞

s14
∫ s

s/2

1
ω15 dω

= q0
453

214 ·
1

423 lim sup
s→∞

s14
(
214 − 1
14s14

)
=

453

214 ·
1

423

(
214 − 1

14

)
q0 = 0.08785q0,

which holds when

0.08785q0 >
1(

1 − 1
350

)3 =⇒ q0 > 11.485.

For condition (3.10) with ρ (s) = s14, we obtain for large s:

π∗
(

3s
2 , 1

)
π∗

(
s
2 , 1

) ∼ 314/3.
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Then

lim sup
s→∞

∫ s

1

ω14 q0

ω15

1 − 1
180

π∗
(

3ω
2 , 1

)
π∗

(
ω
2 , 1

) 
3

−
1
44

[
14ω13

]4[
ω14 · 1

2

]3

(
15

(
ω

2

)2
·

3
5
ω5/3

)−3
 dω

= lim sup
s→∞

∫ s

1

q0

ω

1 − 1
350

27
14

(
3ω
2

)14/3

27
14

(
3ω
2

)14/3


3

−
105.39
ω

 dω

= lim sup
s→∞

∫ s

1

q0

(
1 −

314/3

350

)3

− 105.39

 1
ω

dω

=
[
0.1395q0 − 105.39

]
lim sup

s→∞
ln s = ∞,

which holds when
q0 > 755.6.

Therefore, by Theorems 3.1–3.3, every solution of (4.5) is oscillatory for q0 > 755.6. The results
in [19, 24, 25] do not apply to Eq (4.5); the present study extends and improves them.

5. Conclusions

The study of oscillation in neutral differential equations is a fundamental direction in the theory of
differential equations, given its pivotal role in exploring the qualitative structure of solutions. Despite
the numerous results available in the literature, most are limited to linear or quasi-linear cases, or they
assume strict conditions that limit their generality. In this paper, we developed new and sufficient
criteria for the oscillation of all solutions of third-order nonlinear neutral differential equations in the
standard case, by innovatively combining the comparison principle with first-order equations and the
Riccati substitution technique. This methodology results in the formulation of more flexible and
accurate conditions, contributing to the expansion of known results in this field. Remarkably, these
results open promising horizons for future research aimed at studying oscillation in higher-order
neutral equations or those involving sublinear terms such as(

a2 (s)
[(
a1 (s)

((
x (s) + p (s) xγ (τ (s))

)′)α1
)′]α2

)′
+ q(s)xβ (κ (s)) = 0,

thus promoting the construction of a more comprehensive and in-depth theory of oscillation.
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9. J. Džurina, S. R. Grace, I. Jadlovská, T. X. Li, Oscillation criteria for second-order Emden-Fowler
delay differential equations with a sublinear neutral term, Math. Nachr., 293 (2020), 910–922.
https://doi.org/10.1002/mana.201800196

10. H. S. Alrashdi, F. Masood, A. M. Alshamrani, S. S. Askar, M. Botros, New oscillation results for
noncanonical quasilinear differential equations of neutral type, AIMS Math., 10 (2025), 14372–
14391. https://doi.org/10.3934/math.2025647

AIMS Mathematics Volume 10, Issue 12, 29607–29626.

https://dx.doi.org/https://doi.org/10.1016/j.aml.2016.11.007
https://dx.doi.org/https://doi.org/10.1016/0022-247X(67)90191-6
https://dx.doi.org/https://doi.org/10.1016/0022-247X(72)90098-4
https://dx.doi.org/https://doi.org/10.1007/978-1-4612-9892-2
https://dx.doi.org/https://doi.org/10.7153/dea-09-03
https://dx.doi.org/https://doi.org/10.1002/mana.201800196
https://dx.doi.org/https://doi.org/10.3934/math.2025647


29625

11. S. Aljawi, F. Masood, O. Bazighifan, Oscillation analysis in nonlinear differential
equations with mixed neutral terms, Appl. Math. Sci. Eng., 33 (2025), 1–17.
https://doi.org/10.1080/27690911.2025.2508175

12. B. Almarri, O. Moaaz, M. Anis, B. Qaraad, Third-order neutral differential equation with a
middle term and several delays: asymptotic behavior of solutions, Axioms, 12 (2023), 166.
https://doi.org/10.3390/axioms12020166

13. M. Aldiaiji, B. Qaraad, L. F. Iambor, E. M. Elabbasy, On the asymptotic behavior of class of
third-order neutral differential equations with symmetrical and advanced argument, Symmetry, 15
(2023), 1–13. https://doi.org/10.3390/sym15061165

14. M. AlKandari, Nonlinear differential equations with neutral term: asymptotic behavior of solutions,
AIMS Math., 9 (2024), 33649–33661. https://doi.org/10.3934/math.20241606

15. S. H. Saker, Oscillation criteria of third-order nonlinear delay differential equations, Math. Slovaca,
56 (2006), 433–450.
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