This research examines the boundary-layer flow of a tangent hyperbolic nanofluid over a moving wedge, considering both viscous and radiative effects, in order to evaluate nanoparticle-enhanced thermal properties and non-Newtonian dynamics. The study combines nanofluid heat enhancement with non-Newtonian flow behavior, radiative thermal processes, and motile organism patterns to create an integrated mathematical framework that addresses current research gaps while proposing applications ranging from cooling systems to automotive thermal management, biomedical technology, and energy system design. The differential equations are transformed using similarity transformations before being solved numerically using MATLAB's fourth-order Runge-Kutta technique. The study uses artificial neural networks for prediction validation and findings via contour plots, three-dimensional graphs, and simplified visuals. The study shows that Weissenberg numbers increase fluid elasticity while decreasing drag, heat radiation effects expand temperature profiles while increasing thermal boundary thickness and shifts in thermophoresis, and Lewis numbers have a significant impact on chemical distributions by improving industrial studies of fluid dynamics.
Citation: Khalid Masood. Computational insights and artificial neural network modeling of radiative boundary layer flows in tangent hyperbolic nanofluid[J]. AIMS Mathematics, 2025, 10(12): 28606-28628. doi: 10.3934/math.20251259
This research examines the boundary-layer flow of a tangent hyperbolic nanofluid over a moving wedge, considering both viscous and radiative effects, in order to evaluate nanoparticle-enhanced thermal properties and non-Newtonian dynamics. The study combines nanofluid heat enhancement with non-Newtonian flow behavior, radiative thermal processes, and motile organism patterns to create an integrated mathematical framework that addresses current research gaps while proposing applications ranging from cooling systems to automotive thermal management, biomedical technology, and energy system design. The differential equations are transformed using similarity transformations before being solved numerically using MATLAB's fourth-order Runge-Kutta technique. The study uses artificial neural networks for prediction validation and findings via contour plots, three-dimensional graphs, and simplified visuals. The study shows that Weissenberg numbers increase fluid elasticity while decreasing drag, heat radiation effects expand temperature profiles while increasing thermal boundary thickness and shifts in thermophoresis, and Lewis numbers have a significant impact on chemical distributions by improving industrial studies of fluid dynamics.
| [1] |
M. Omama, A. A. Arafa, A. Elsaid, W. K. Zahra, MHD tri-hybrid nanofluid blood flow in a porous cylinder: Insights from fractional relaxation modeling with thermal radiation and slip velocity boundary condition, ZAMM‐Z. Angew. Math. Me., 105 (2025), e202400375. https://doi.org/10.1002/zamm.202400375 doi: 10.1002/zamm.202400375
|
| [2] |
I. Imoro, C. J. Etwire, R. Musah, Effect of pressure on MHD flow of blood-based hybrid nanofluid through an inclined Stenotic–Aneurysmal artery, J. Appl. Math., 2025 (2025), 8847298. https://doi.org/10.1155/jama/8847298 doi: 10.1155/jama/8847298
|
| [3] |
F. Z. Wang, A. M. Saeed, V. Puneeth, N. A. Shah, S. M. Anwar, K. Geudri, et al., Heat and mass transfer of Ag-H2O nano-thin film flowing over a porous medium: A modified Buongiorno's model, Chinese J. Phys., 84 (2023), 330–342. https://doi.org/10.1016/j.cjph.2023.01.001 doi: 10.1016/j.cjph.2023.01.001
|
| [4] |
J. Mehboob, R. Ellahi, S. M. Sait, N. S. Akbar, Optimizing bioconvective heat transfer with MHD Eyring–Powell nanofluids containing motile microorganisms with viscosity variability and porous media in ciliated microchannels, Int. J. Numer. Method. H., 35 (2024), 825–846. https://doi.org/10.1108/HFF-11-2024-0838 doi: 10.1108/HFF-11-2024-0838
|
| [5] |
S. Gupta, P. K. Jain, V. S. Sangtani, V. K. Singhal, EMHD flow of double stratified 3D-cobalt ferrite based Maxwell nanoliquid flow over an exponentially stretching surface, Phys. Scr., 100 (2025), 035202. https://doi.org/10.1088/1402-4896/ada4f3 doi: 10.1088/1402-4896/ada4f3
|
| [6] |
D. Vieru, A. A. Zafar, Some Couette flows of a Maxwell fluid with wall slip condition, Appl. Math. Inform. Sci., 7 (2013), 209–219, https://doi.org/10.12785/amis/070126 doi: 10.12785/amis/070126
|
| [7] |
A. D. Ohaegbue, S. O. Salawu, R. A. Oderinu, E. O. Fatunmbi, A. O. Akindele, Thermal dissipation of two-step combustible tangent hyperbolic fluid with quadratic Boussinesq approximation and convective cooling, Results in Materials, 22 (2024), 100565. https://doi.org/10.1016/j.rinma.2024.100565 doi: 10.1016/j.rinma.2024.100565
|
| [8] |
E. H. Doha, R. M. Hafez, Y. H. Youssri, Shifted Jacobi spectral-Galerkin method for solving hyperbolic partial differential equations, Comput. Math. Appl., 78 (2019), 889–904. https://doi.org/10.1016/j.camwa.2019.03.011 doi: 10.1016/j.camwa.2019.03.011
|
| [9] |
Y. H. Youssri, R. M. Hafez, Exponential Jacobi spectral method for hyperbolic partial differential equations, Math. Sci., 13 (2019), 347–354. https://doi.org/10.1007/s40096-019-00304-w doi: 10.1007/s40096-019-00304-w
|
| [10] |
S. M. Sayed, A. S. Mohamed, E. M. Abo-Eldahab, Y. H. Youssri, Spectral framework using modified shifted Chebyshev polynomials of the third-kind for numerical solutions of one-and two-dimensional hyperbolic telegraph equations, Bound. Value Probl., 2025 (2025), 7. https://doi.org/10.1186/s13661-024-01987-4 doi: 10.1186/s13661-024-01987-4
|
| [11] |
A. M. Alqahtani, M. Bilal, M. B. Riaz, W. Chammam, J. Shafi, M. U. Rahman, et al., Forced convective tangent hyperbolic nanofluid flow subject to heat source/sink and Lorentz force over a permeable wedge: numerical exploration, Nanotechnol. Rev., 13 (2024), 20240014. https://doi.org/10.1515/ntrev-2024-0014 doi: 10.1515/ntrev-2024-0014
|
| [12] |
G. Ramasekhar, M. Jawad, A. Divya, S. Jakeer, H. A. Ghazwani, M. R. Almutiri, et al., Heat transfer exploration for bioconvected tangent hyperbolic nanofluid flow with activation energy and joule heating induced by Riga plate, Case Stud. Therm. Eng., 55 (2024), 104100. https://doi.org/10.1016/j.csite.2024.104100 doi: 10.1016/j.csite.2024.104100
|
| [13] |
J. Madhu, J. K. Madhukesh, I. Sarris, B. C. Prasannakumara, G. K. Ramesh, N. A. Shah, et al., Influence of quadratic thermal radiation and activation energy impacts over oblique stagnation point hybrid nanofluid flow across a cylinder, Case Stud. Therm. Eng., 60 (2024), 104624. https://doi.org/10.1016/j.csite.2024.104624 doi: 10.1016/j.csite.2024.104624
|
| [14] |
B. Alqahtani, E. R. El-Zahar, M. B. Riaz, L. F. Seddek, A. Ilyas, Z. Ullah, et al., Computational analysis of microgravity and viscous dissipation impact on periodical heat transfer of MHD fluid along porous radiative surface with thermal slip effects, Case Stud. Therm. Eng., 60 (2024), 104641. https://doi.org/10.1016/j.csite.2024.104641 doi: 10.1016/j.csite.2024.104641
|
| [15] |
Z. H. Khan, W. A. Khan, S. M. Ibrahim, K. Swain, Z. T. Huang, Impact of multiple slips and thermal radiation on heat and mass transfer in MHD Maxwell hybrid nanofluid flow over porous stretching sheet, Case Stud. Therm. Eng., 61 (2024), 104906. https://doi.org/10.1016/j.csite.2024.104906 doi: 10.1016/j.csite.2024.104906
|
| [16] |
S. U. Zaman, M. N. Aslam, M. B. Riaz, A. Akgul, A. Hussan, Williamson MHD nanofluid flow with radiation effects through slender cylinder, Results in Engineering, 22 (2024), 101966. https://doi.org/10.1016/j.rineng.2024.101966 doi: 10.1016/j.rineng.2024.101966
|
| [17] |
K. Sudarmozhi, D. Iranian, Q. M. Al-Mdallal, Revolutionizing energy flow: Unleashing the influence of MHD in the presence of free convective heat transfer with radiation, International Journal of Thermofluids, 22 (2024), 100662. https://doi.org/10.1016/j.ijft.2024.100662 doi: 10.1016/j.ijft.2024.100662
|
| [18] |
K. K. Asogwa, B. S. Goud, N. A. Shah, S. J. Yook, Rheology of electromagnetohydrodynamic tangent hyperbolic nanofluid over a stretching riga surface featuring dufour effect and activation energy, Sci. Rep., 12 (2022), 14602. https://doi.org/10.1038/s41598-022-18998-9 doi: 10.1038/s41598-022-18998-9
|
| [19] |
M. S. Anwar, M. S. Alqarni, M. Irfan, Exploring the marvels of heat transfer: MHD convection at a stagnation point in non-Newtonian fluid with yield stress and chemical reactions, Chinese J. Phys., 89 (2024), 1299–1308. https://doi.org/10.1016/j.cjph.2024.01.030 doi: 10.1016/j.cjph.2024.01.030
|
| [20] |
K. U. Rehman, N. Fatima, W. Shatanawi, N. Kousar, Mathematical solutions for coupled nonlinear equations based on bioconvection in MHD Casson nanofluid flow, AIMS Mathematics, 10 (2025), 598–633. https://doi.org/10.3934/math.2025027 doi: 10.3934/math.2025027
|
| [21] |
N. K. Mishra, P. Sharma, B. K. Sharma, B. Almohsen, L. M. Pérez, Electroosmotic MHD ternary hybrid Jeffery nanofluid flow through a ciliated vertical channel with gyrotactic microorganisms: Entropy generation optimization, Heliyon, 10 (2024), e25102. https://doi.org/10.1016/j.heliyon.2024.e25102 doi: 10.1016/j.heliyon.2024.e25102
|
| [22] |
P. Agarwal, R. Jain, K. Loganathan, Thermally radiative flow of MHD Powell-Eyring nanofluid over an exponential stretching sheet with swimming microorganisms and viscous dissipation: A numerical computation, International Journal of Thermofluids, 23 (2024), 100773. https://doi.org/10.1016/j.ijft.2024.100773 doi: 10.1016/j.ijft.2024.100773
|
| [23] |
M. S. Sankari, M. E. Rao, Z. E. Shams, S. Algarni, M. N. Sharif, T. Alqahtani, et al., Williamson MHD nanofluid flow via a porous exponentially stretching sheet with bioconvective fluxes, Case Stud. Therm. Eng., 59 (2024), 104453. https://doi.org/10.1016/j.csite.2024.104453 doi: 10.1016/j.csite.2024.104453
|
| [24] |
K. Z. Zhang, N. A. Shah, M. Alshehri, S. Alkarni, A. Wakif, S. M. Eldin, Water thermal enhancement in a porous medium via a suspension of hybrid nanoparticles: MHD mixed convective Falkner's-Skan flow case study, Case Stud. Therm. Eng., 47 (2013), 103062. https://doi.org/10.1016/j.csite.2023.103062 doi: 10.1016/j.csite.2023.103062
|
| [25] |
K. A. Kumar, A computational model for the density of motile micro-organisms in the casson fluid flow with thermal radition: A computational model for the density of motile micro-organisms in the casson fluid flow with thermal radition, J. Nav. Archit. Mar. Eng., 21 (2024), 79–86. https://doi.org/10.3329/jname.v21i1.70396 doi: 10.3329/jname.v21i1.70396
|
| [26] |
H. Gasmi, A. M. Obalalu, A. O. Akindele, S. A. Salaudeen, U. Khan, A. Ishak, et al., Thermal performance of a motile-microorganism within the two-phase nanofluid flow for the distinct non-Newtonian models on static and moving surfaces, Case Stud. Therm. Eng., 58 (2024), 104392. https://doi.org/10.1016/j.csite.2024.104392 doi: 10.1016/j.csite.2024.104392
|
| [27] |
C. Kamsuwan, X. L. Wang, L. P. Seng, C. K. Xian, R. Piemjaiswang, P. Piumsomboon, et al., Simulation of nanofluid micro-channel heat exchanger using computational fluid dynamics integrated with artificial neural network, Energy Rep., 9 (2023), 239–247. https://doi.org/10.1016/j.egyr.2022.10.412 doi: 10.1016/j.egyr.2022.10.412
|
| [28] |
Y. R. Qu, D. J. Jasim, S. M. Sajadi, S. Salahshour, M. K. Khabaz, A. Rahmanian, et al., Artificial neural network modeling of thermal characteristics of WO3-CuO (50: 50)/water hybrid nanofluid with a back-propagation algorithm, Mater. Today Commun., 38 (2024), 108169. https://doi.org/10.1016/j.mtcomm.2024.108169 doi: 10.1016/j.mtcomm.2024.108169
|
| [29] |
M. A. Z. Raja, M. Shoaib, E. R. El-Zahar, S. Hussain, Y. -M. Li, M. I. Khan, et al., Heat transport in entropy-optimized flow of viscoelastic fluid due to Riga plate: analysis of artificial neural network, Wave. Random Complex, 35 (2022), 1077–1096. https://doi.org/10.1080/17455030.2022.2028933 doi: 10.1080/17455030.2022.2028933
|
| [30] |
P. Karmakar, S. Das, N. Mahato, A. Ali, R. N. Jana, Dynamics prediction using an artificial neural network for a weakly conductive ionized fluid streamed over a vibrating electromagnetic plate, Eur. Phys. J. Plus, 139 (2024), 407. https://doi.org/10.1140/epjp/s13360-024-05197-w doi: 10.1140/epjp/s13360-024-05197-w
|
| [31] |
S. A. Lone, Ar. Khan, T. Gul, S. Mukhtar, W. Alghamdi, I. Ali, Entropy generation for stagnation point dissipative hybrid nanofluid flow on a Riga plate with the influence of nonlinear convection using neural network approach, Colloid Polym. Sci., 302 (2024), 745–770. https://doi.org/10.1007/s00396-024-05227-0 doi: 10.1007/s00396-024-05227-0
|
| [32] |
S. K. Rawat, M. Yaseen, M. Pant, C. S. Ujarari, Designing artificial intelligence computing techniques to study heat transfer of a ternary hybrid nanofluid flow: Application of particle swarm optimization and artificial neural network, Mod. Phys. Lett. B, 39 (2025), 2550114. https://doi.org/10.1142/s0217984925501143 doi: 10.1142/s0217984925501143
|
| [33] |
S. Venkateswarlu, B. H. Babu, M. V. Krishna, Effects of heat generation and absorption on thermal radiative MHD flow of chemically reacting Casson nanofluids over a wedge, Case Stud. Therm. Eng., 65 (2025), 105637. https://doi.org/10.1016/j.csite.2024.105637 doi: 10.1016/j.csite.2024.105637
|
| [34] |
M. D. Kumar, J. L. D. Palencia, G. Dharmaiah, A. Wakif, S. Noeiaghdam, U. Fernandez-Gamiz, et al., ANFIS-PSO analysis on axisymmetric tetra hybrid nanofluid flow of Cu-CNT-Graphene-Tio2 with WEG-Blood under linear thermal radiation and inclined magnetic field: A bio-medicine application, Heliyon, 11 (2025), e41429. https://doi.org/10.1016/j.heliyon.2024.e41429 doi: 10.1016/j.heliyon.2024.e41429
|
| [35] |
M. J. Babu, Y. S. Rao, A. S. Kumar, C. S. K. Raju, S. A. Shehzad, T. Ambreen, et al., Squeezed flow of polyethylene glycol and water based hybrid nanofluid over a magnetized sensor surface: a statistical approach, Int. Commun. Heat Mass, 135 (2022), 106136. https://doi.org/10.1016/j.icheatmasstransfer.2022.106136 doi: 10.1016/j.icheatmasstransfer.2022.106136
|
| [36] | J. H. Mathews, K. D. Fink, Numerical methods using MATLAB 4e, New Jersey: New Jersey, 2004. |
| [37] | K. E. Atkinson, W. M. Han, D. Stewart, Numerical solution of ordinary differential equations, New York: John Wiley & Sons, 2009. https://doi.org/10.1002/9781118164495 |
| [38] |
B. L. Kuo, Application of the differential transformation method to the solutions of Falkner-Skan wedge flow, Acta Mechanica, 164 (2003), 161–174. https://doi.org/10.1007/s00707-003-0019-4 doi: 10.1007/s00707-003-0019-4
|
| [39] |
A. Ishak, R. Nazar, I. Pop, Falkner-Skan equation for flow past a moving wedge with suction or injection, J. Appl. Math. Comput., 25 (2007), 67–83. https://doi.org/10.1007/BF02832339 doi: 10.1007/BF02832339
|
| [40] |
S. M. Atif, S. Hussain, M. Sagheer, Heat and mass transfer analysis of time-dependent tangent hyperbolic nanofluid flow past a wedge, Phys. Lett. A, 383 (2019), 1187–1198. https://doi.org/10.1016/j.physleta.2019.01.003 doi: 10.1016/j.physleta.2019.01.003
|