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Abstract: This research examines the boundary-layer flow of a tangent hyperbolic nanofluid over a 

moving wedge, considering both viscous and radiative effects, in order to evaluate nanoparticle-

enhanced thermal properties and non-Newtonian dynamics. The study combines nanofluid heat 

enhancement with non-Newtonian flow behavior, radiative thermal processes, and motile organism 

patterns to create an integrated mathematical framework that addresses current research gaps while 

proposing applications ranging from cooling systems to automotive thermal management, biomedical 

technology, and energy system design. The differential equations are transformed using similarity 

transformations before being solved numerically using MATLAB’s fourth-order Runge-Kutta 

technique. The study uses artificial neural networks for prediction validation and findings via contour 

plots, three-dimensional graphs, and simplified visuals. The study shows that Weissenberg numbers 

increase fluid elasticity while decreasing drag, heat radiation effects expand temperature profiles while 

increasing thermal boundary thickness and shifts in thermophoresis, and Lewis numbers have a 

significant impact on chemical distributions by improving industrial studies of fluid dynamics. 
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1. Introduction 

Nanoparticle-containing base fluids represent a leading topic in fluid dynamics that focuses on 
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creating composite materials exhibiting enhanced thermal properties. When nanoparticles of metallic 

or oxide composition are incorporated into fluids, they dramatically affect both thermal and fluidic 

characteristics. The new applications take advantage of nanotechnology developments to boost 

material and heating properties, thus driving innovation among various industrial sectors. The heat 

transfer performance and skin friction behavior of traditional fluids improved substantially due to the 

work conducted by Omama et al. [1] on nanofluid flow through porous cylinders. The study by Imoro 

et al. [2] focused on pressure gradient effects on blood-based hybrid nanofluid flow behaviors in 

stenotic-aneurysmal arteries through fractional derivative analysis that demonstrated major changes in 

velocity, temperature and concentration fields. Wang et al. [3] indicate that an increase in the mixed 

convection parameter of nanofluid flow over a porous medium results in an increase in the temperature 

profile, while causing a decrease in the velocity profile. Mehboob et al. [4] investigated how Eyring-

Powell nanofluids optimized bioconvective heat transfer in ciliated microchannels with higher 

viscosity led to decreased temperatures and stronger radiation parameters to increased temperatures. 

The laminar flow characteristics of cobalt ferrite containing Maxwell nanofluids were analyzed by 

Gupta et al. [5] under combined electromagnetohydrodynamic and thermal/solute stratification 

conditions. 

The area of study of non-Newtonian fluids has rapidly grown in importance over the last twenty 

years. The velocity distributions corresponding to both slip and non-slip boundary conditions for non-

Newtonian Maxwell fluids were established by Vieru and Zafar [6]. The tangent hyperbolic fluid 

model represents one of the core non-Newtonian fluid designs. Tangent hyperbolic nanofluids are 

characterized by a shear-thinning property, together with a high value of thermal conductivity, which 

makes them indispensable in maximizing cooling in heat exchangers, solar collectors, microchannels 

and rotating machines, as well as electronic apparatuses. In addition to this, they are also used in 

biomedical applications, especially in drug delivery to specific sites inside the body, and cooling of 

medical equipment, renewable energy systems, including photovoltaic/thermal collections and thermal 

energy storage systems, and in industrial processes, which include chemical reactor manipulation, 

lubrication, and coating processes. Their usefulness in automotive cooling systems, 

magnetohydrodynamic pumps, flows over porous media, and desalination, as well as waste-heat 

recovery, is enhanced by the improvement of their flow and heat-transfer properties, encouraging a 

wide range of industries to manage thermal and process efficiency, as illustrated in Figure 1. The field 

of chemical engineering benefits from using the tangent hyperbolic fluid model instead of traditional 

Newtonian model systems. The research by Ohaegbue et al. [7] established fundamental knowledge 

about complex thermal phenomena in combustible two-step tangent hyperbolic fluid flows through a 

complete analysis of heat transfer and dissipation. Spectrally hyperbolic partial differential equations 

(HPDEs) using the Galerkin method and approximate solutions using double shifted Jacobi 

Polynomials were examined by Doha et al. [8]. The convergence and error analyses of the hyperbolic 

equation employing HPDE were discussed in detail by Youssri et al. [9]. Sayed et al. [10] demonstrated 

that the third kind modified shifted Chebyshev polynomials’ numerical solutions of hyperbolic 

equations align closely with exact solutions. Alqahtani et al. [11] and Ramasekhar et al. [12] 

investigated tangent hyperbolic nanofluids (THNFs) that exhibited excellent conductivity and stability 

properties that make THNFs suitable for electronic device cooling applications. 

 

 

https://www.sciencedirect.com/topics/physics-and-astronomy/partial-differential-equation
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/galerkin-method
https://www.sciencedirect.com/topics/physics-and-astronomy/hypergeometric-functions
https://www.sciencedirect.com/topics/physics-and-astronomy/hypergeometric-functions
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Figure 1. The utilization of tangent hyperbolic nanofluid across numerous disciplines. 

Thermal radiation (TR) is the process by which energy is transferred via electromagnetic radiation 

released by objects that are characterized by temperatures higher than absolute zero. The phenomenon 

plays a key role in many crucial elements of daily life as well as industrial processes. As an example, 

thermal radiation can greatly influence heat transfer, which can be observed in technical systems, 

e.g., gas turbines, nuclear power plants, and other propulsion technologies provided by missiles and 

aircraft [13]. Radiation emits pulses as heat energy through spatial mediums as well as external 

nanoparticles. The rate of thermal dispersion, along with all other thermo-physical properties of a 

fluid, stems from its radiation characteristics. Alqahtani et al. [14] simulated heat transfer aspects in 

a magnetized porous medium under reduced gravity by analyzing thermal slip effects and radiative 

heat transfer together with viscous dissipation. Khan et al. [15] studied hybrid nanofluid behavior in 

magnetohydrodynamic (MHD) flow over porous stretching sheets leading to substantial heat transfer 

efficiency improvements. Zaman et al. [16] examined Williamson nanofluid flow through slender 

cylinders to show how diverse dimensionless parameters effect the evolution of velocity, temperature 

and concentration distributions. The flow characteristics of viscoelastic Maxwell fluids over porous 

plates revealed that increasing radiation and porous parameters enhance temperature profiles according 

to Sudarmozhi et al. [17]. Asogwa et al. [18] explained that the activation energy suppresses tangential 

hyperbolic concentration spreading of the nanofluid and that the rise in temperature in the hyperbolic 

tangential flow of nanofluid results from the growth of the Dufour effect. Anwar et al. [19] 

demonstrated how non-Newtonian Casson fluids behave during stagnation-point MHD convection by 

studying their complex magnetic field and fluid property and heat transfer interactions. 

The primary objective of introducing self-moving microorganisms like gyrotactic, oxytactic and 

chemotactic microorganisms have a natural tendency to gather in the upper layer of the fluid medium 

due to their inherent motility. A dense surface layer becomes viable through this behavior and it might 
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trigger potential destabilization. These microorganisms undergo disintegration due to their upward 

swimming motion combined with the formation of macroscopic convection currents. Bioconvection 

presents significant importance to multiple operational sectors in manufacturing and biological 

sciences. The design of biological polymers and environmentally sustainable applications along with 

microbial-enhanced oil recovery systems requires extensive research experimentation and analytical 

enhancements to improve sustainable fuel cell technologies, biosensors, biotechnology and 

pharmaceutical systems, and ongoing mathematical programming. The research conducted by Rehman 

et al. [20] demonstrated that bioconvection in Casson nanofluid flow improved simultaneously as 

ferrous ferric oxide nanofluid was incorporated into the system. Mishra et al. [22] researched Jeffery 

fluid motion in ciliated vertical channels, while Agarwal et al. [22] studied Powell-Eyring fluid 

characteristics when exposed to exponentially stretching sheets. Sankari et al. [23] carried out a study 

investigating Williamson nanofluids under the same conditions as previous researchers, while Zhang 

et al. [24] analyzed water thermal enhancement in a porous medium via a suspension of hybrid 

nanoparticles. An investigation was conducted to integrate physical parameters which included MHD 

mixed convective Falkner's-Skan flow case study. Kumar et al. [25] developed a computational system 

to simulate the density distribution of Casson fluid-mobile microorganism mixes under thermal 

radiation conditions. The research by Gasmi et al. [26] evaluated the thermal behavior of mobile 

microorganisms in two-phase nanofluid flow using non-Newtonian fluid models that worked for both 

motionless and moving surfaces. 

Artificial neural networks (ANNs) are machine learning techniques that are widely used to 

enhance thermal performance evaluations. The ability of ANNs to process historical data results in 

estimated outcomes that remain steady within a known, accurate area, matching human cognitive 

understanding. Kamsuwan et al. [27] have postulated an amalgamated computational fluid dynamics 

(CFD) simulation, when applied with artificial neural networks (ANNs), to investigate the operational 

efficacy of microchannel heat exchangers with the use of nanofluids. Qu et al. [28] applied an artificial 

neural network to replicate the thermal properties of hybrid nanofluids. Zahoor Raja et al. [29] also 

researched the advanced numerical computations made possible by artificial neural networks (ANNs) 

refined by a process known as the Levenberg-Marquardt algorithm (NN-BLMT) to study the 

theoretical implications of the quantity of heat generated in second-grade fluids caused by the Riga 

plate. Karmakar et al. [30] examined predictive behaviors by implementing an ionized fluid passing 

through an oscillating Riga plate with the help of ANNs. Lone et al. [31] assessed the aspects of 

irreversibility and the stagnation point flow of a hybrid nanofluid flow using a Riga plate with an 

artificial neural network (ANN). Rawat et al. [32] directed artificial neural networks to ternary hybrid 

nanofluid heat transfer analysis through particle swarm optimization. 

1.1.  State-of-the-art literature 

Existing investigations into nanofluids and non-Newtonian fluids provide only a disjointed 

representation of reality. Previous research, primarily regarding nanoparticle enhanced thermal 

transfer, skin friction, radiation phenomena and geometries relating to porous or biomedical 

problems [1–5,13–19], as well as investigation of tangent hyperbolic formulations and related non-

Newtonian approaches or spectral computational techniques [6–12], investigation of bioconvection 

in connection with motile microorganisms [20–26], research employing artificial intelligence for 

predicting of thermal flows [27–32], has been independently executed, and as a result, a unified and 
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coherent framework that simultaneously integrates tangent hyperbolic rheology, nanoparticles, 

thermal radiation, Brownian coefficient. The present research attempts to correct this ignored gap, by 

elaborating and solving such an integrated model and further simulating its thermo-bioconvective 

behavior using artificial neural network surrogates. 

The current study integrates the enhanced thermal behavior of nanoparticle-enhanced tangent 

hyperbolic nanofluids with a mathematical-computational-artificial intelligence framework that 

examines radiative effects, Brownian motion, thermophoresis, and bioconvective characteristics, 

thereby addressing a critical knowledge gap in existing literature. Previous research studied nanofluids 

and non-Newtonian fluids separately, and a combined analysis of these phenomena under real-life flow 

systems remains unexplored. This research offers new insights about elastic, thermal, and mass transfer 

connections by applying a fourth-order Runge–Kutta numerical approach alongside similarity 

transformations with ANNs and three-dimensional graphics, enabling an accurate characterization of 

nonlinear thermo-fluidic interactions with a minimal increase in computational cost. The findings 

contribute to understanding complex fluid dynamics and provide valuable implications for 

technological applications, including electronic cooling devices, automotive heat control systems and 

biomedical devices, and energy harvesting systems, which form the foundation for experimental and 

industrial innovation. 

2. Mathematical model 

The research examines a two-dimensional boundary-layer flow of an incompressible laminar 

tangent hyperbolic nanofluid over a moving sharp wedge under viscous and radiative conditions. The 

( ) ( / )mU x U x L=  expression defines the velocity distribution in the flow system over 1,m   with 

L  representing the characteristic length and m  representing the wedge angle parameter that relates 

to the included angle 1  according to 1 1/ (2 ).m  = −  Here, 1  acts as an indicator for pressure 

gradient changes. 

 

Figure 2. Model geometry. 
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A positive value of 1  points to a negative pressure gradient (favorable), while a negative 1  

points to a positive pressure gradient (adverse). The solution shows singular characteristics at 0x =

only when 0m  , but it stays valid for all values of x  in the case of m > 0. A convective heat transfer 

process maintains the wedge surface temperature constant, and the wedge bottom experiences heat 

transfer by convective fluid exchange at a temperature 
fT  with coefficient h . The wedge extends its 

surfaces at a uniform rate according to ( ) mU x ax=  under laminar boundary layer conditions [30]. The 

positive ( )U x  indicates service parallel alignment of the extending wave, while a negative value 

represents the opposing orientation for shrinking applications. The physical arrangement of the 

problem is depicted in Figure 2. All assumptions employed lead to a combination of continuity, and 

momentum, energy, and motile equations as follows [33]: 
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Similarity conditions applied in wedge geometry structures allow scientists to study physical 

system behaviors through investigations that require fewer time-consuming procedures. Model 

creation relies on these conditions to develop replicas of real-world situations while using simplified 

or scaled-down representations. The model must maintain behavioral consistency with the original 

system that predictions about reality become possible. Engineering and scientific experts can predict 

the reaction of wedge-shaped objects, like aircraft wings or dams, under specific conditions, such as 

fluid dynamics or pressure, through testing smaller or simplified prototypes due to similarity 

conditions. Such a research strategy reduces time expenses and saves resources and work effort while 

maintaining accuracy. Aerodynamic research allows scientists to utilize wind tunnel testing of small 

wedge-shaped wings, which predict actual wing performance during flight. The models and actual 

wings face proportionally corresponding forces and flow patterns through these established conditions. 

Through the Roseland approximation, the radiative heat flux 
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  can be 

determined by considering k   as the mean absorption coefficient and 1  as the Stefan-Boltzmann 

constant. Employing Taylor’s sequence, we develop T4 regarding the free stream temperature T while 

ignoring higher-order variables. One approximate value that may be attained from this is 
4 34 3T T T = − , we find: 
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For the governing PDE, the boundary conditions are 
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Dimensionless ODEs result from transforming the PDEs with similarity transformations 
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The highly suitable conditions lead to a specific form of Eq (1), while Eqs (2) and (4)–(6) take 

corresponding forms. The identities of (1) lead the other expressions (2), (4), and (5) to become 

equivalent 
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The transformed boundary conditions for this problem issue appears in this sequence: 
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Significant real-world parameters correspond to surface drag, diffusion, and thermal transmission 

constants, which are defined as follows: 
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The specified similarity transformation allowed us to solve these quantities, which produced the 

following results 
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3. Numerical scheme and results validation 

This investigation solves the governing equations of a tangent hyperbolic nanofluid moving along 

a wedge through the implementation of the fourth-order Runge–Kutta method while incorporating 

essential physical parameters. The tool in the MATLAB platform executes numerical analysis. We 

convert the higher-order differential equations through the introduction of auxiliary variables into a 

system of first-order ordinary differential equations (ODEs) to simplify the process. Processing begins 

by specifying ODE boundary conditions and initial values. Then, the ode45 built-in tool executes 

numerical computations for this system, which will work based on the Runge-Kutta method from the 

study of Palencia et al. [34]. The process terminates when the desired precision goal from the calculated 

residuals meets the required accuracy level [35]. The MATLAB Ann tool enables improved execution, 

data computation, and visualization of numerical methods and their resulting output. 
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The numerical error was determined by re-executing the Runge-Kutta [36,37] method with a 

modified absolute tolerance (1x10-6) and a more strict tolerance (1x10-10) on the domain η ∈[0, 10]. 

The variations in the values of the shear coefficients observed were below the 0.4% threshold for each 

of the conditions, thus confirming the strength, convergence, and stability of the present study solution. 

3.1.  Artificial neural network 

For outcomes using ANN-based methodologies, specifically on the Levenberg-Marquardt 

strategy, the dataset division that is provided by the Runge-Kutta fourth-order methodology was split 

into training, testing, and validation sets. In this analysis, 70%  of the data set was used as training 

data and the remaining 30%  was used as test and validation data. The training process was stopped 

when the network propagation exceeded a specified threshold that was checked using a validation 

process. This did not disrupt the training phase, thus allowing the assessment of the network 

performance to be carried out at regular intervals during and after the training process. Figure 3 

illustrates the neural network structures of the current study. The results produced by the ANN were 

later checked with the help of the computation of the related errors. The divergence of the proposed 

methodology was fast, and stability and reliability were also good compared to traditional methods. 

The ANN was consistent, had no flaws, and was skilled in high-accuracy performance at an efficient 

rate. The ANN-based solution strategy was far superior to conventional methods in solutions, 

achieving the same order of magnitude faster predictions and approximations than traditional solvers, 

which, in many cases, required long periods to solve a system of ordinary differential equations. The 
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efficacy, reliability, and efficiency of the networks in the fluid flow analysis were evaluated using 

regression statistics, mean square errors of the training, testing, and validation set, error histograms of 

complex simulations, and accuracy assessment. A comparative analysis was performed using LM on 

basis of metrics like regression fitness, mean square error (MSE), and error histograms. Moreover, the 

application of the Levenberg-Marquardt algorithm was done in the MATLAB machine learning 

toolbox, where ANN was combined with the Runge-Kutta fourth-order process to investigate the 

behaviors of fluids and test the findings. R² values of 100% will represent a good fit between the 

response and predictors. 

 

Figure 3. Neural network structure. 

Table 1 details the results of the current study, revealing that the value for ''(0)f−  for various 

values of   with the previous studies carried out by [37–39], thus proving the validity of the model. 

Table 2 shows that the Levenberg-Marquardt presents impressive accuracy regardless of the evaluated 

architectures, including 10 and 15 hidden neurons, which produce extremely low mean squared error 

(MSE) and perfect correlation (R = 1) for training, validation, and testing data. Moreover, increasing 

in the number of hidden neurons to 20 leads to a slight decrease in performance (MSE is higher and R 

is less than 1). Figure 4 demonstrates the legitimacy of the artificial neural network. 
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Table 1. Comparison of current and published studies of skin friction ''(0)f− . 

  [38] [39] [40] Present work 

0.0 0.469600 0.4696 0.469600 0.46960 

0.1 0.587080 0.5870 0.587035 0.58706 

0.3 0.774724 0.7780 0.774757 0.77478 

0.5 0.927905 0.9277 0.927681 0.92769 

1.0 1.238589 1.2323 1.232588 1.23259 

Table 2． Performance of Levenberg–Marquardt ANN for different numbers of hidden 

neurons (MSE and R). 

Hidden neurons Gradient Performance Mu MSE R 

10 9.9e-8 3.56e-11 9.9e-8 

Train 3.5569e-11 1 

Validation 9.5004e-11 1 

Test 3.6567e-11 1 

15 9.9e-8 2.9561e-12 1e-11 

Train 2.9561e-12 1 

Validation 3.3500e-11 1 

Test 3.7641e-11 1 

20 2.2e-5 8.66e-07 1e-8 

Train 2.7291e-06 0.9999 

Validation 4.1625e-06 0.9999 

Test 1.5798e-05 0.9996 

 

Figure 4. Comparison of ANN and simulation results. 
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Figure 5 demonstrates a combined computational and neural network model that analyzes 

radiative tangential hyperbolic tangent nanofluid flow over a moving wedge. The experimental data, 

together with the ANN’s ability to project non-linear behavior, led to validated results, confirmed by 

contour plots, three-dimensional streamlines, and accurate Nusselt number and skin friction coefficient. 

 

Figure 5. Flow chart. 

4. Results and discussion 

4.1. ANN and various factors influence on the flow profiles 

The Weissenberg number (We ) affects velocity, as shown in Figures 6(a), 6(b), and 8(a) through 

combination plots along with three-dimensional and two-dimensional representations. The 

Weissenberg number ( We ) is a ratio used to measure the ratio between fluid relaxation time and flow 

time. Therefore, a high We indicates that the microstructure of the tangent hyperbolic fluid (contained 

by polymer-like chains or aggregates) supports a longer deformation and produces larger elastic normal 

stresses. These stresses oppose the large local shear rates as well as smooth, sharp changes in 

deformation and consequently minimize the velocity gradient close to the walls and flatten the velocity 

profile. The temperature profiles under different radiation levels ( Rd ) are shown in Figures 6(c), 6(d), 

and 8(b), through both contour plots and three-dimensional and two-dimensional display formats. The 

intensification of the radiation parameter increases the strength of radiative heat flux, providing an 

extra energy transportation mechanism, increasing the temperature of the fluid. This additional 

radiative heating reduces the temperature gradient close to the wall and enhances a stronger diffusion 

of heat across the surface, therefore boosting the thickness of the thermal boundary layer and indicating 
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a greater radiative effect on the overall distribution of heat in the flow. 

The concentration profile changes in response to the thermophoresis parameter ( Nt ) are presented 

through contour plots (Figure 7(a)) and three-dimensional (Figure 7(b)) and two-dimensional 

illustrations (Figure 8(c)). The thermophoresis parameter ( Nt  ) increases the strength of the 

thermophoretic force that causes the movement of nanoparticles between high-temperature and low-

temperature regions. This unidirectional migration will cause an increase in the concentration of 

particles near the cooler surface and, therefore, a reduction of local concentration gradients, thus 

increasing the concentration boundary layer, which will increase the concentration profile. 

The Lewis number ( Lb ) effect on motile profiles is shown in Figures 7(c), 7(d), and 8(d) through 

contour plots and three-dimensional and two-dimensional visuals. When the Lewis number increases, 

the thermal diffusivity gains superiority over mass diffusivity in the system. Higher heat transport 

speed shortens the concentration gradients responsible for motile accumulation, thus reducing the 

presence of motile cells within the flow. 

 

Figure 6. Impact of We  and Rd  on velocity and temperature profiles. 
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Figure 7. Impact of Nt  and Lb  on concentration and motile profiles. 

 

Figure 8. 2-D plot for , ,We Rd Nt , and Lb on velocity, temperature, concentration, and 

motile profiles. 
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Low error values in Figure 9(a) indicate model consistency across different datasets; Figure 9(b) 

shows that the model reaches convergence through error reduction. The strong relationship between 

expected values and target results is clear in Figure 9(c). Figure 9(d) shows that the Weissenberg 

number displays a direct relationship with velocity profile reduction because it leads to diminished 

skin friction factors. The physical properties of increased Weissenberg number result in fluid elasticity 

that leads to smoothed velocity gradients adjacent to the wall, while simultaneously reducing wall 

shear stress and consequently lowering skin friction. Figures 8 and 9 also demonstrate the effect of 

We  and n  on skin friction. Figures 10(a) and 10(b) illustrate that skin friction values are enhanced 

as the values of We  rise, but a reverse behavior is seen for n , as shown in Figures 11(a) and 11(b). 

Figure 12(a) demonstrates that most errors from training, validation, and testing datasets focus on 

lower value ranges, which indicate reliable prediction outcomes. The mean squared error shown in 

Figure 12(b) keeps declining through each epoch, demonstrating that the model was successfully 

trained. Figure 12(c) (regression) reveals an excellent predictive agreement between calculated and 

target values that signifies high modeling precision, and Figure 12(d) validates precise model data 

alignment. Physically, the increased parameter ( Nt ) causes particles to move more strongly from warm 

areas, thus lowering the wall temperature gradient and reducing the Nusselt number model data 

alignment. Figure 13 highlights the effects of the Brownian motion ( Nb  ) and Nt   parameters on 

Nusselt numbers. Figures 13(a) and 13(b) indicate that the value of the Nusselt number decreases as 

the values of Nb  and Nt  increase. An increase in the thermophoresis parameter ( Nt ) enhances the 

thermophoretic movement of the nanoparticles on the heated wall to the cooler core and consequently 

reinforces the transfer of energy out of the surface by the migrating particles. This redistribution of the 

thermal energy helps to smooth the temperature field near the wall, enhances the thickness of a thermal 

boundary layer, and decreases the temperature gradient at the wall; therefore, the value of the local 

Nusselt number decreases with Nt . Figure 14 demonstrates a comparison between streamline patterns 

for cases where 0.1We =   and 0.2We =  . When the Weissenberg number becomes higher, the 

viscoelastic effects strengthen and produce alterations in flow structures through which streamline 

changes occur alongside boundary compression, leading to increased velocity gradients closest to walls. 

Figure 15 shows 0.1n =  and 0.2n =  streamline distributions. Shear-thinning properties of the fluid 

increase when the power-law index ( n  ) decreases, which causes streamlined displacement and 

compression in high shear regions. The accentuated velocity gradient develops mostly in close 

proximity to the boundaries because of these changes. 
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Figure 9. Ann’s plot for We  on skin friction. 

 

Figure 10. Effect of We  on skin friction. 
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Figure 11. Effect of n  on skin friction. 

 

Figure 12. Ann’s plot for Nt  on Nusselt number. 
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Figure 13. Effect of Nb  & Nt  on the Nusselt number. 

 

Figure 14. Streamlines for 0.1we =  and 0.2we = . 

 

Figure 15. Streamlines for 0.1n =  and 0.2n = . 
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4.2.  Grid independence test and comparison of results 

In Table 3, fine and finer mesh results are compared values of the Nusselt number coincide in all 

cases of We . The grid independence test is met because no additional refinement results in any change; 

thus, the fine grid is sufficient to produce the correct simulation. 

Table 3. Grid independence test. 

We  
Results for fine mesh Results for finer mesh 

Nusselt number Nusselt number 

1 0.2210 0.2210 

2 0.2261 0.2261 

3 0.2290 0.2290 

4 0.2310 0.2310 

5. Conclusions 

This study investigates the two-dimensional boundary-layer flow of a laminar tangent hyperbolic 

nanofluid over a moving wedge under viscous and radiative conditions. The combination of 3D graphs 

along with contour plots and streamline visualizations delivers a complete understanding about flow 

dynamics, as follows. 

❖ We  (Weissenberg number): An increase in the Weissenberg number makes the fluid more elastic, 

thus leading to reduced velocity gradients near the border and decreased skin friction. 

❖ Rd   (Radiation parameter): The increase of radiation parameter strengthens the heat transfer 

process through the production of expanded temperature zones and thickened thermal boundary layers 

that result in a higher Nusselt number. 

❖ Nt  (Thermophoresis parameter): The enhanced thermophoresis parameter strengthens 

thermophoretic forces between nanoparticles as they move towards cooler areas and increase the 

concentration boundary layer. 

❖ Lb (Lewis number): Higher Lewis number values indicate that thermal diffusivity dominates over 

mass diffusivity, causing concentration gradients and motile-cell accumulation to become less 

pronounced. 

❖ Skin friction: As the Weissenberg number increases, the skin friction factor increases, indicating 

higher wall shear stress under the studied conditions. 

❖ Nusselt number (for Nt  ): Increased Nt parameter results in a diminished wall temperature 

difference that equals a Nusselt number reduction, which represents inefficient convective heat transfer 

operation. 

❖ Streamlines: Visual streamline examinations demonstrate that non-Newtonian actions cause large 

boundary-region displacements and compression patterns. 

❖ Artificial neural networks (ANNs): Integrating ANNs enhances predictive validation of 

performance parameters, thus reducing the need for exhaustive numerical investigations. 

❖ Future scope: The study sets the groundwork for future investigations in non-Newtonian nanofluid 

dynamics, which will aid the optimization of cooling systems across multiple industrial sectors. 

❖ A physically informed neural network is one of the limitations of the current study. 
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Nomenclature 

Name Units Symbol Name Units Symbol 

Cartesian coordinate components ( )m  ( ),x y  Velocity components ( )/m s  ( ),u v  

Thermal radiation parameter - R  
Brownian motion 

parameter 
- Nb  

Weissenberg number - We  Specific heat ( )/ .J Kg K  
pC  

Eckert’s number - Ec  Thermal diffusivity ( )2 /m s    

Radiation heat flux ( )2?W m  
rq  Schmidt number - bSc  

Density ( )3/kg m    
Density ratio of the motile 

microorganisms 
-   

Peclet number - Pe  Brownian diffusion - BD  

Lewis number - Lb  Thermophoretic parameter - Nt  
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