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Abstract: This research examines the boundary-layer flow of a tangent hyperbolic nanofluid over a
moving wedge, considering both viscous and radiative effects, in order to evaluate nanoparticle-
enhanced thermal properties and non-Newtonian dynamics. The study combines nanofluid heat
enhancement with non-Newtonian flow behavior, radiative thermal processes, and motile organism
patterns to create an integrated mathematical framework that addresses current research gaps while
proposing applications ranging from cooling systems to automotive thermal management, biomedical
technology, and energy system design. The differential equations are transformed using similarity
transformations before being solved numerically using MATLAB’s fourth-order Runge-Kutta
technique. The study uses artificial neural networks for prediction validation and findings via contour
plots, three-dimensional graphs, and simplified visuals. The study shows that Weissenberg numbers
increase fluid elasticity while decreasing drag, heat radiation effects expand temperature profiles while
increasing thermal boundary thickness and shifts in thermophoresis, and Lewis numbers have a
significant impact on chemical distributions by improving industrial studies of fluid dynamics.
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1. Introduction

Nanoparticle-containing base fluids represent a leading topic in fluid dynamics that focuses on
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creating composite materials exhibiting enhanced thermal properties. When nanoparticles of metallic
or oxide composition are incorporated into fluids, they dramatically affect both thermal and fluidic
characteristics. The new applications take advantage of nanotechnology developments to boost
material and heating properties, thus driving innovation among various industrial sectors. The heat
transfer performance and skin friction behavior of traditional fluids improved substantially due to the
work conducted by Omama et al. [1] on nanofluid flow through porous cylinders. The study by Imoro
et al. [2] focused on pressure gradient effects on blood-based hybrid nanofluid flow behaviors in
stenotic-aneurysmal arteries through fractional derivative analysis that demonstrated major changes in
velocity, temperature and concentration fields. Wang et al. [3] indicate that an increase in the mixed
convection parameter of nanofluid flow over a porous medium results in an increase in the temperature
profile, while causing a decrease in the velocity profile. Mehboob et al. [4] investigated how Eyring-
Powell nanofluids optimized bioconvective heat transfer in ciliated microchannels with higher
viscosity led to decreased temperatures and stronger radiation parameters to increased temperatures.
The laminar flow characteristics of cobalt ferrite containing Maxwell nanofluids were analyzed by
Gupta et al. [5] under combined electromagnetohydrodynamic and thermal/solute stratification
conditions.

The area of study of non-Newtonian fluids has rapidly grown in importance over the last twenty
years. The velocity distributions corresponding to both slip and non-slip boundary conditions for non-
Newtonian Maxwell fluids were established by Vieru and Zafar [6]. The tangent hyperbolic fluid
model represents one of the core non-Newtonian fluid designs. Tangent hyperbolic nanofluids are
characterized by a shear-thinning property, together with a high value of thermal conductivity, which
makes them indispensable in maximizing cooling in heat exchangers, solar collectors, microchannels
and rotating machines, as well as electronic apparatuses. In addition to this, they are also used in
biomedical applications, especially in drug delivery to specific sites inside the body, and cooling of
medical equipment, renewable energy systems, including photovoltaic/thermal collections and thermal
energy storage systems, and in industrial processes, which include chemical reactor manipulation,
lubrication, and coating processes. Their usefulness in automotive cooling systems,
magnetohydrodynamic pumps, flows over porous media, and desalination, as well as waste-heat
recovery, is enhanced by the improvement of their flow and heat-transfer properties, encouraging a
wide range of industries to manage thermal and process efficiency, as illustrated in Figure 1. The field
of chemical engineering benefits from using the tangent hyperbolic fluid model instead of traditional
Newtonian model systems. The research by Ohaegbue et al. [7] established fundamental knowledge
about complex thermal phenomena in combustible two-step tangent hyperbolic fluid flows through a
complete analysis of heat transfer and dissipation. Spectrally hyperbolic partial differential equations
(HPDEs) using the Galerkin method and approximate solutions using double shifted Jacobi
Polynomials were examined by Doha et al. [8]. The convergence and error analyses of the hyperbolic
equation employing HPDE were discussed in detail by Youssri et al. [9]. Sayed et al. [10] demonstrated
that the third kind modified shifted Chebyshev polynomials’ numerical solutions of hyperbolic
equations align closely with exact solutions. Algahtani et al. [11] and Ramasekhar et al. [12]
investigated tangent hyperbolic nanofluids (THNFs) that exhibited excellent conductivity and stability
properties that make THNFs suitable for electronic device cooling applications.
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Figure 1. The utilization of tangent hyperbolic nanofluid across numerous disciplines.

Thermal radiation (TR) is the process by which energy is transferred via electromagnetic radiation
released by objects that are characterized by temperatures higher than absolute zero. The phenomenon
plays a key role in many crucial elements of daily life as well as industrial processes. As an example,
thermal radiation can greatly influence heat transfer, which can be observed in technical systems,
e.g., gas turbines, nuclear power plants, and other propulsion technologies provided by missiles and
aircraft [13]. Radiation emits pulses as heat energy through spatial mediums as well as external
nanoparticles. The rate of thermal dispersion, along with all other thermo-physical properties of a
fluid, stems from its radiation characteristics. Algahtani et al. [14] simulated heat transfer aspects in
a magnetized porous medium under reduced gravity by analyzing thermal slip effects and radiative
heat transfer together with viscous dissipation. Khan et al. [15] studied hybrid nanofluid behavior in
magnetohydrodynamic (MHD) flow over porous stretching sheets leading to substantial heat transfer
efficiency improvements. Zaman et al. [16] examined Williamson nanofluid flow through slender
cylinders to show how diverse dimensionless parameters effect the evolution of velocity, temperature
and concentration distributions. The flow characteristics of viscoelastic Maxwell fluids over porous
plates revealed that increasing radiation and porous parameters enhance temperature profiles according
to Sudarmozhi et al. [17]. Asogwa et al. [ 18] explained that the activation energy suppresses tangential
hyperbolic concentration spreading of the nanofluid and that the rise in temperature in the hyperbolic
tangential flow of nanofluid results from the growth of the Dufour effect. Anwar et al. [19]
demonstrated how non-Newtonian Casson fluids behave during stagnation-point MHD convection by
studying their complex magnetic field and fluid property and heat transfer interactions.

The primary objective of introducing self-moving microorganisms like gyrotactic, oxytactic and
chemotactic microorganisms have a natural tendency to gather in the upper layer of the fluid medium
due to their inherent motility. A dense surface layer becomes viable through this behavior and it might
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trigger potential destabilization. These microorganisms undergo disintegration due to their upward
swimming motion combined with the formation of macroscopic convection currents. Bioconvection
presents significant importance to multiple operational sectors in manufacturing and biological
sciences. The design of biological polymers and environmentally sustainable applications along with
microbial-enhanced oil recovery systems requires extensive research experimentation and analytical
enhancements to improve sustainable fuel cell technologies, biosensors, biotechnology and
pharmaceutical systems, and ongoing mathematical programming. The research conducted by Rehman
et al. [20] demonstrated that bioconvection in Casson nanofluid flow improved simultaneously as
ferrous ferric oxide nanofluid was incorporated into the system. Mishra et al. [22] researched Jeffery
fluid motion in ciliated vertical channels, while Agarwal et al. [22] studied Powell-Eyring fluid
characteristics when exposed to exponentially stretching sheets. Sankari et al. [23] carried out a study
investigating Williamson nanofluids under the same conditions as previous researchers, while Zhang
et al. [24] analyzed water thermal enhancement in a porous medium via a suspension of hybrid
nanoparticles. An investigation was conducted to integrate physical parameters which included MHD
mixed convective Falkner's-Skan flow case study. Kumar et al. [25] developed a computational system
to simulate the density distribution of Casson fluid-mobile microorganism mixes under thermal
radiation conditions. The research by Gasmi et al. [26] evaluated the thermal behavior of mobile
microorganisms in two-phase nanofluid flow using non-Newtonian fluid models that worked for both
motionless and moving surfaces.

Artificial neural networks (ANNs) are machine learning techniques that are widely used to
enhance thermal performance evaluations. The ability of ANNs to process historical data results in
estimated outcomes that remain steady within a known, accurate area, matching human cognitive
understanding. Kamsuwan et al. [27] have postulated an amalgamated computational fluid dynamics
(CFD) simulation, when applied with artificial neural networks (ANNs), to investigate the operational
efficacy of microchannel heat exchangers with the use of nanofluids. Qu et al. [28] applied an artificial
neural network to replicate the thermal properties of hybrid nanofluids. Zahoor Raja et al. [29] also
researched the advanced numerical computations made possible by artificial neural networks (ANNSs)
refined by a process known as the Levenberg-Marquardt algorithm (NN-BLMT) to study the
theoretical implications of the quantity of heat generated in second-grade fluids caused by the Riga
plate. Karmakar et al. [30] examined predictive behaviors by implementing an ionized fluid passing
through an oscillating Riga plate with the help of ANNs. Lone et al. [31] assessed the aspects of
irreversibility and the stagnation point flow of a hybrid nanofluid flow using a Riga plate with an
artificial neural network (ANN). Rawat et al. [32] directed artificial neural networks to ternary hybrid
nanofluid heat transfer analysis through particle swarm optimization.

1.1. State-of-the-art literature

Existing investigations into nanofluids and non-Newtonian fluids provide only a disjointed
representation of reality. Previous research, primarily regarding nanoparticle enhanced thermal
transfer, skin friction, radiation phenomena and geometries relating to porous or biomedical
problems [1-5,13—-19], as well as investigation of tangent hyperbolic formulations and related non-
Newtonian approaches or spectral computational techniques [6—12], investigation of bioconvection
in connection with motile microorganisms [20-26], research employing artificial intelligence for
predicting of thermal flows [27-32], has been independently executed, and as a result, a unified and
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coherent framework that simultaneously integrates tangent hyperbolic rheology, nanoparticles,
thermal radiation, Brownian coefficient. The present research attempts to correct this ignored gap, by
elaborating and solving such an integrated model and further simulating its thermo-bioconvective
behavior using artificial neural network surrogates.

The current study integrates the enhanced thermal behavior of nanoparticle-enhanced tangent
hyperbolic nanofluids with a mathematical-computational-artificial intelligence framework that
examines radiative effects, Brownian motion, thermophoresis, and bioconvective characteristics,
thereby addressing a critical knowledge gap in existing literature. Previous research studied nanofluids
and non-Newtonian fluids separately, and a combined analysis of these phenomena under real-life flow
systems remains unexplored. This research offers new insights about elastic, thermal, and mass transfer
connections by applying a fourth-order Runge—Kutta numerical approach alongside similarity
transformations with ANNs and three-dimensional graphics, enabling an accurate characterization of
nonlinear thermo-fluidic interactions with a minimal increase in computational cost. The findings
contribute to understanding complex fluid dynamics and provide valuable implications for
technological applications, including electronic cooling devices, automotive heat control systems and
biomedical devices, and energy harvesting systems, which form the foundation for experimental and
industrial innovation.

2. Mathematical model

The research examines a two-dimensional boundary-layer flow of an incompressible laminar
tangent hyperbolic nanofluid over a moving sharp wedge under viscous and radiative conditions. The
U(x)=U_(x/L)" expression defines the velocity distribution in the flow system over m <1, with

L representing the characteristic length and m representing the wedge angle parameter that relates
to the included angle 73, according to m= f,/(2—f,). Here, B, acts as an indicator for pressure

gradient changes.

Figure 2. Model geometry.
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A positive value of S, points to a negative pressure gradient (favorable), while a negative S,
points to a positive pressure gradient (adverse). The solution shows singular characteristics at x =0
only when m <0, but it stays valid for all values of x in the case of m > 0. A convective heat transfer

process maintains the wedge surface temperature constant, and the wedge bottom experiences heat
transfer by convective fluid exchange at a temperature 7, with coefficient /. The wedge extends its

surfaces at a uniform rate according to U(x) =ax" under laminar boundary layer conditions [30]. The
positive U(x) indicates service parallel alignment of the extending wave, while a negative value
represents the opposing orientation for shrinking applications. The physical arrangement of the

problem is depicted in Figure 2. All assumptions employed lead to a combination of continuity, and
momentum, energy, and motile equations as follows [33]:
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Similarity conditions applied in wedge geometry structures allow scientists to study physical
system behaviors through investigations that require fewer time-consuming procedures. Model
creation relies on these conditions to develop replicas of real-world situations while using simplified
or scaled-down representations. The model must maintain behavioral consistency with the original
system that predictions about reality become possible. Engineering and scientific experts can predict
the reaction of wedge-shaped objects, like aircraft wings or dams, under specific conditions, such as
fluid dynamics or pressure, through testing smaller or simplified prototypes due to similarity
conditions. Such a research strategy reduces time expenses and saves resources and work effort while
maintaining accuracy. Aerodynamic research allows scientists to utilize wind tunnel testing of small
wedge-shaped wings, which predict actual wing performance during flight. The models and actual
wings face proportionally corresponding forces and flow patterns through these established conditions.

ok 3 A2

Through the Roseland approximation, the radiative heat flux agr =—16§€1f‘” 88]; can be

v v

determined by considering k" as the mean absorption coefficient and o, as the Stefan-Boltzmann

constant. Employing Taylor’s sequence, we develop 7* regarding the free stream temperature 7 while
ignoring higher-order variables. One approximate value that may be attained from this is
T* =471’ -3T_, we find:
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For the governing PDE, the boundary conditions are
I
u=U@L=cr, v=v 0=y, Ler+1l,
at y=0 dy oy k (7)
C=C,, N=N,.
at y—>o0o u->Ulx), T->T, C->C, NN, (8)
Dimensionless ODEs result from transforming the PDEs with similarity transformations
m+1)U(x m+1wU (x m—1
N e YA i e el [f(n) +n—f'<n)],
2vx 2x m+1 )
(c-C,) (T-T,) (N-N,)
o) =———7=, O=—"~, x()=——"7-.

The highly suitable conditions lead to a specific form of Eq (1), while Eqgs (2) and (4)—(6) take
corresponding forms. The identities of (1) lead the other expressions (2), (4), and (5) to become
equivalent

(A=m)f ™ 7" B~ f )+ nWef™ [ =0, (10)

1 4 Nt 2
—|1+—=Rd |8"+ f0'- Nb| —0'¢p'—— 6" |+PrE. "y =0, 11
Pr[+3 j s [ ¢ Nb j_'— ' C(f) (b

Nt

n S \J _0":0, 12
Q'+ cbf(P"'Nb (12)
X"+ Lbf y'=Pe((x +Q)p"+ 1'9')=0. (13)

The transformed boundary conditions for this problem issue appears in this sequence:

n=0 f0)=s, f'(0)=4, @0)=1, 0'=-Bi(-0+1), y(0)=1. (14)

At n >0 f(p)—>1, 00)—>0, @) —>0, x(7@)—0. (15)

3 1 3
Where Rd =163Z—;§° Thermal radiation parameter, We=1T" /% Weissenberg number,
V c
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D,(C -C -
Nb = % Brownian motion parameter, Nt = %;Z“) Thermophoretic parameter,
V o0
2
Pr= K Prandtl number’ ﬂl = 2—m , Cc= U—(X) Eckert's number, SCb = L Schmidt
a 1+m C,(T,-T,) D,

number.
Significant real-world parameters correspond to surface drag, diffusion, and thermal transmission
constants, which are defined as follows:

2
ou I (ou
ou, U fou or
’{ay ﬁ[ﬁyn ‘x[’{a]‘%j
o y —xq,,
Cf. = - , Nu, = ,Sh =——m

pU k(T,~T,) Dy(C,-C))

(16)

The specified similarity transformation allowed us to solve these quantities, which produced the
following results

Re cf, = [ ((l —m) S0y +n e g "(O)J, Re." Nu, = |" L 122 rayor(0),
| ; 2 2 3 (17)
Re Sh_ = - mT”(p'(O).

3. Numerical scheme and results validation

This investigation solves the governing equations of a tangent hyperbolic nanofluid moving along
a wedge through the implementation of the fourth-order Runge—Kutta method while incorporating
essential physical parameters. The tool in the MATLAB platform executes numerical analysis. We
convert the higher-order differential equations through the introduction of auxiliary variables into a
system of first-order ordinary differential equations (ODEs) to simplify the process. Processing begins
by specifying ODE boundary conditions and initial values. Then, the ode45 built-in tool executes
numerical computations for this system, which will work based on the Runge-Kutta method from the
study of Palencia et al. [34]. The process terminates when the desired precision goal from the calculated
residuals meets the required accuracy level [35]. The MATLAB Ann tool enables improved execution,
data computation, and visualization of numerical methods and their resulting output.

D f=n,
2) f'=y
3) S"=y5

4) (I=n)dy, + y,y; + B(y; =) +nWedy,y, =0,

5) 9:y4>
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6) 0'=y;,
1 4 Nt
7) E(ngdys + V1Y —Nb(—ym —ﬁyszj—PrEc(—ys)z =0,
8) ¢=y,
9 ¢'=y,

Nt
10) dy, + 5S¢,y v, +ﬁdy5 =0,

11) E, = yq,
12) E}' = y,,

13) dy, + Lby,y, + Pe(—(y, + Q)dy, — y,v,) = 0.

14) Boundary conditions
15) yy=s, y,=4, yg=L ys=-Bil-y,), y, =1,

16) y,(0) =1, y,(20) =0,  ys(0) >0, ys(0) = 0.

The numerical error was determined by re-executing the Runge-Kutta [36,37] method with a
modified absolute tolerance (1x10°) and a more strict tolerance (1x107'%) on the domain n €[0, 10].
The variations in the values of the shear coefficients observed were below the 0.4% threshold for each
of the conditions, thus confirming the strength, convergence, and stability of the present study solution.

3.1. Artificial neural network

For outcomes using ANN-based methodologies, specifically on the Levenberg-Marquardt
strategy, the dataset division that is provided by the Runge-Kutta fourth-order methodology was split
into training, testing, and validation sets. In this analysis, 70% of the data set was used as training
data and the remaining 30% was used as test and validation data. The training process was stopped
when the network propagation exceeded a specified threshold that was checked using a validation
process. This did not disrupt the training phase, thus allowing the assessment of the network
performance to be carried out at regular intervals during and after the training process. Figure 3
illustrates the neural network structures of the current study. The results produced by the ANN were
later checked with the help of the computation of the related errors. The divergence of the proposed
methodology was fast, and stability and reliability were also good compared to traditional methods.
The ANN was consistent, had no flaws, and was skilled in high-accuracy performance at an efficient
rate. The ANN-based solution strategy was far superior to conventional methods in solutions,
achieving the same order of magnitude faster predictions and approximations than traditional solvers,
which, in many cases, required long periods to solve a system of ordinary differential equations. The
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efficacy, reliability, and efficiency of the networks in the fluid flow analysis were evaluated using
regression statistics, mean square errors of the training, testing, and validation set, error histograms of
complex simulations, and accuracy assessment. A comparative analysis was performed using LM on
basis of metrics like regression fitness, mean square error (MSE), and error histograms. Moreover, the
application of the Levenberg-Marquardt algorithm was done in the MATLAB machine learning
toolbox, where ANN was combined with the Runge-Kutta fourth-order process to investigate the
behaviors of fluids and test the findings. R* values of 100% will represent a good fit between the
response and predictors.

Input
! E’

r 7 Faoaen™

©

. 10/

' ] Outp u;\\

©
-

4 Cutput

Figure 3. Neural network structure.

Table 1 details the results of the current study, revealing that the value for —f"(0) for various
values of £ with the previous studies carried out by [37-39], thus proving the validity of the model.
Table 2 shows that the Levenberg-Marquardt presents impressive accuracy regardless of the evaluated
architectures, including 10 and 15 hidden neurons, which produce extremely low mean squared error
(MSE) and perfect correlation (R = 1) for training, validation, and testing data. Moreover, increasing
in the number of hidden neurons to 20 leads to a slight decrease in performance (MSE is higher and R
is less than 1). Figure 4 demonstrates the legitimacy of the artificial neural network.
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Table 1. Comparison of current and published studies of skin friction

—/"0).

B [38] [39] [40] Present work
0.0 0.469600 0.4696 0.469600 0.46960
0.1 0.587080 0.5870 0.587035 0.58706
0.3 0.774724 0.7780 0.774757 0.77478
0.5 0.927905 0.9277 0.927681 0.92769
1.0 1.238589 1.2323 1.232588 1.23259
Table 2. Performance of Levenberg—Marquardt ANN for different numbers of hidden
neurons (MSE and R).
Hidden neurons  Gradient Performance Mu MSE R
Train 3.5569¢ ! 1
10 9.9¢™ 3.56¢™ 9.9¢™ Validation 9.5004¢™"! 1
Test 3.6567¢"! 1
Train 2.9561¢™" 1
15 9.9¢™ 2.9561¢™" le Validation 3.3500¢™"! 1
Test 3.7641¢e™" 1
Train 2.7291e% 0.9999
20 2.2¢7 8.66e"7 le® Validation 4.1625¢ 0.9999
Test 1.5798¢ 0.9996
5 — 1.37792 1.37791
Qe 0794040 0794038
We Skin friction(RK) Skin friction(ANN)

Figure 4. Comparison of ANN and simulation results.
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Figure 5 demonstrates a combined computational and neural network model that analyzes
radiative tangential hyperbolic tangent nanofluid flow over a moving wedge. The experimental data,
together with the ANN’s ability to project non-linear behavior, led to validated results, confirmed by
contour plots, three-dimensional streamlines, and accurate Nusselt number and skin friction coefficient.
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Figure 5. Flow chart.
4. Results and discussion
4.1. ANN and various factors influence on the flow profiles

The Weissenberg number (We ) affects velocity, as shown in Figures 6(a), 6(b), and 8(a) through
combination plots along with three-dimensional and two-dimensional representations. The
Weissenberg number ( We) is a ratio used to measure the ratio between fluid relaxation time and flow
time. Therefore, a high We indicates that the microstructure of the tangent hyperbolic fluid (contained
by polymer-like chains or aggregates) supports a longer deformation and produces larger elastic normal
stresses. These stresses oppose the large local shear rates as well as smooth, sharp changes in
deformation and consequently minimize the velocity gradient close to the walls and flatten the velocity
profile. The temperature profiles under different radiation levels ( Rd ) are shown in Figures 6(c), 6(d),
and 8(b), through both contour plots and three-dimensional and two-dimensional display formats. The
intensification of the radiation parameter increases the strength of radiative heat flux, providing an
extra energy transportation mechanism, increasing the temperature of the fluid. This additional
radiative heating reduces the temperature gradient close to the wall and enhances a stronger diffusion
of heat across the surface, therefore boosting the thickness of the thermal boundary layer and indicating

AIMS Mathematics Volume 10, Issue 12, 28606-28628.
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a greater radiative effect on the overall distribution of heat in the flow.

The concentration profile changes in response to the thermophoresis parameter ( Nt ) are presented
through contour plots (Figure 7(a)) and three-dimensional (Figure 7(b)) and two-dimensional
illustrations (Figure 8(c)). The thermophoresis parameter ( Nt ) increases the strength of the
thermophoretic force that causes the movement of nanoparticles between high-temperature and low-
temperature regions. This unidirectional migration will cause an increase in the concentration of
particles near the cooler surface and, therefore, a reduction of local concentration gradients, thus
increasing the concentration boundary layer, which will increase the concentration profile.

The Lewis number ( Lb ) effect on motile profiles is shown in Figures 7(¢c), 7(d), and 8(d) through
contour plots and three-dimensional and two-dimensional visuals. When the Lewis number increases,
the thermal diffusivity gains superiority over mass diffusivity in the system. Higher heat transport
speed shortens the concentration gradients responsible for motile accumulation, thus reducing the
presence of motile cells within the flow.

Piot of f'(y Jvs. We 3-D Plot of f'(1) vs. We and n :
S o6 i °°
04 fos
|
X
1

(@ (b)

Plot of Temprature # vs. Rd 3-D Plot of Temprature @ vs. Rd

. o v‘,\\
0054

R

© @

Figure 6. Impact of We and Rd on velocity and temperature profiles.
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Figure 7. Impact of Nt and Lb on concentration and motile profiles.
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motile profiles.
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Low error values in Figure 9(a) indicate model consistency across different datasets; Figure 9(b)
shows that the model reaches convergence through error reduction. The strong relationship between
expected values and target results is clear in Figure 9(c). Figure 9(d) shows that the Weissenberg
number displays a direct relationship with velocity profile reduction because it leads to diminished
skin friction factors. The physical properties of increased Weissenberg number result in fluid elasticity
that leads to smoothed velocity gradients adjacent to the wall, while simultaneously reducing wall
shear stress and consequently lowering skin friction. Figures 8 and 9 also demonstrate the effect of
We and n on skin friction. Figures 10(a) and 10(b) illustrate that skin friction values are enhanced
as the values of We rise, but a reverse behavior is seen for 7, as shown in Figures 11(a) and 11(b).
Figure 12(a) demonstrates that most errors from training, validation, and testing datasets focus on
lower value ranges, which indicate reliable prediction outcomes. The mean squared error shown in
Figure 12(b) keeps declining through each epoch, demonstrating that the model was successfully
trained. Figure 12(c) (regression) reveals an excellent predictive agreement between calculated and
target values that signifies high modeling precision, and Figure 12(d) validates precise model data
alignment. Physically, the increased parameter ( Nt ) causes particles to move more strongly from warm
areas, thus lowering the wall temperature gradient and reducing the Nusselt number model data
alignment. Figure 13 highlights the effects of the Brownian motion (Nb ) and Nt parameters on
Nusselt numbers. Figures 13(a) and 13(b) indicate that the value of the Nusselt number decreases as
the values of Nb and Nt increase. An increase in the thermophoresis parameter ( Nt ) enhances the
thermophoretic movement of the nanoparticles on the heated wall to the cooler core and consequently
reinforces the transfer of energy out of the surface by the migrating particles. This redistribution of the
thermal energy helps to smooth the temperature field near the wall, enhances the thickness of a thermal
boundary layer, and decreases the temperature gradient at the wall; therefore, the value of the local
Nusselt number decreases with Nt . Figure 14 demonstrates a comparison between streamline patterns
for cases where We=0.1 and We=0.2. When the Weissenberg number becomes higher, the
viscoelastic effects strengthen and produce alterations in flow structures through which streamline
changes occur alongside boundary compression, leading to increased velocity gradients closest to walls.
Figure 15 shows n=0.1 and n=0.2 streamline distributions. Shear-thinning properties of the fluid
increase when the power-law index ( n ) decreases, which causes streamlined displacement and
compression in high shear regions. The accentuated velocity gradient develops mostly in close
proximity to the boundaries because of these changes.
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4.2. Grid independence test and comparison of results
In Table 3, fine and finer mesh results are compared values of the Nusselt number coincide in all
cases of We . The grid independence test is met because no additional refinement results in any change;

thus, the fine grid is sufficient to produce the correct simulation.

Table 3. Grid independence test.

. Results for fine mesh Results for finer mesh
¢ Nusselt number Nusselt number

1 0.2210 0.2210

2 0.2261 0.2261

3 0.2290 0.2290

4 0.2310 0.2310

5. Conclusions

This study investigates the two-dimensional boundary-layer flow of a laminar tangent hyperbolic
nanofluid over a moving wedge under viscous and radiative conditions. The combination of 3D graphs
along with contour plots and streamline visualizations delivers a complete understanding about flow
dynamics, as follows.

s We (Weissenberg number): An increase in the Weissenberg number makes the fluid more elastic,
thus leading to reduced velocity gradients near the border and decreased skin friction.

% Rd (Radiation parameter): The increase of radiation parameter strengthens the heat transfer
process through the production of expanded temperature zones and thickened thermal boundary layers
that result in a higher Nusselt number.

% Nt (Thermophoresis parameter): The enhanced thermophoresis parameter strengthens
thermophoretic forces between nanoparticles as they move towards cooler areas and increase the
concentration boundary layer.

% Lb (Lewis number): Higher Lewis number values indicate that thermal diffusivity dominates over
mass diffusivity, causing concentration gradients and motile-cell accumulation to become less
pronounced.

% Skin friction: As the Weissenberg number increases, the skin friction factor increases, indicating
higher wall shear stress under the studied conditions.

% Nusselt number (for Nt): Increased Nt parameter results in a diminished wall temperature
difference that equals a Nusselt number reduction, which represents inefficient convective heat transfer
operation.

+» Streamlines: Visual streamline examinations demonstrate that non-Newtonian actions cause large
boundary-region displacements and compression patterns.

«» Artificial neural networks (ANNSs): Integrating ANNs enhances predictive validation of
performance parameters, thus reducing the need for exhaustive numerical investigations.

¢+ Future scope: The study sets the groundwork for future investigations in non-Newtonian nanofluid
dynamics, which will aid the optimization of cooling systems across multiple industrial sectors.

K/

« A physically informed neural network is one of the limitations of the current study.
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Nomenclature
Name Units Symbol Name Units Symbol
Cartesian coordinate components () (x,7) Velocity components (m/s) (,v)
. Brownian motion
Thermal radiation parameter - R - Nb
parameter
Weissenberg number - We Specific heat (J/KgK) C,
Eckert’s number - Ec Thermal diffusivity (m*/5) (04
Radiation heat flux (’W mz) q, Schmidt number - Sc,
Density ratio of the motile
Density (kg/m’) P . Y . - Q
microorganisms
Peclet number - Pe Brownian diffusion - Dy
Lewis number - Lb Thermophoretic parameter - Nt
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